cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110191 Decimal expansion of 1/6 - 1/(2*Pi).

Original entry on oeis.org

0, 0, 7, 5, 1, 1, 7, 2, 3, 5, 7, 4, 7, 7, 1, 3, 3, 0, 8, 9, 7, 7, 8, 2, 9, 0, 3, 2, 9, 4, 1, 5, 2, 3, 0, 4, 6, 3, 2, 2, 0, 7, 0, 2, 0, 9, 2, 6, 2, 1, 0, 2, 1, 7, 9, 1, 8, 9, 9, 9, 3, 2, 2, 6, 0, 7, 7, 6, 9, 8, 6, 9, 0, 3, 2, 4, 4, 0, 1, 3, 1, 5, 7, 6, 5, 5, 2, 8, 6, 3, 9, 0, 0, 4, 1, 3, 5, 8, 0, 7, 1, 0
Offset: 0

Views

Author

Eric W. Weisstein, Jul 15 2005

Keywords

Examples

			0.007511723574771330897...
		

References

  • A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 1 (Overseas Publishers Association, Amsterdam, 1986), p. 722, section 5.3.5, formula 9.

Crossrefs

Cf. A086201.

Programs

  • Mathematica
    RealDigits[1/6 - 1/(2*Pi), 10, 120, -1][[1]] (* Amiram Eldar, Jun 15 2023 *)
  • PARI
    -1/(2*Pi) + 1/6 \\ Michel Marcus, Jan 11 2016
    
  • PARI
    -suminf(k=1, 1/sin(k*Pi*I)^2) \\ Michel Marcus, Jan 11 2016
    
  • PARI
    suminf(k=1, 1/sinh(k*Pi)^2) \\ Vaclav Kotesovec, May 19 2022

Formula

Equals -Sum_{k>=1} 1/sin(k*Pi*i)^2. - Michel Marcus, Jan 11 2016
Equals Sum_{k>=1} 1/sinh(k*Pi)^2. - Vaclav Kotesovec, May 19 2022