cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110200 Triangle, read by rows, where T(n,k) equals the sum of squares of numbers < 2^n having exactly k ones in their binary expansion.

Original entry on oeis.org

1, 5, 9, 21, 70, 49, 85, 395, 535, 225, 341, 1984, 3906, 3224, 961, 1365, 9429, 24066, 29274, 17241, 3969, 5461, 43434, 135255, 215900, 188595, 86106, 16129, 21845, 196095, 717825, 1412275, 1628175, 1106445, 411995, 65025, 87381, 872788
Offset: 1

Views

Author

Paul D. Hanna, Jul 16 2005

Keywords

Comments

Compare to triangle A110205 (sum of cubes).

Examples

			Row 4 is formed by sums of squares of numbers < 2^4:
T(4,1) = 1^2 + 2^2 + 4^2 + 8^2 = 85;
T(4,2) = 3^2 + 5^2 + 6^2 + 9^2 + 10^2 + 12^2 = 395;
T(4,3) = 7^2 + 11^2 + 13^2 + 14^2 = 535;
T(4,4) = 15^2 = 225.
Triangle begins:
1;
5, 9;
21, 70, 49;
85, 395, 535, 225;
341, 1984, 3906, 3224, 961;
1365, 9429, 24066, 29274, 17241, 3969;
5461, 43434, 135255, 215900, 188595, 86106, 16129;
21845, 196095, 717825, 1412275, 1628175, 1106445, 411995, 65025;
87381, 872788, 3662848, 8541876, 12197570, 10974236, 6095208, 1915228, 261121; ...
Row g.f.s are:
row 1: (1 + 1*x)/(1+x);
row 2: (5 + 9*x);
row 3: (21 + 49*x)*(1+x);
row 4: (85 + 225*x)*(1+x)^2.
G.f. for row n is:
((4^n-1)/3 + (2^n-1)^2*x)*(1+x)^(n-2).
		

Crossrefs

Cf. A110201 (central terms), A002450 (column 1), A110202 (column 2), A110203 (column 3), A110204 (column 4), A016290 (row sums), A110205.

Programs

  • PARI
    T(n,k)=(4^n-1)/3*binomial(n-2,k-1)+(2^n-1)^2*binomial(n-2,k-2)
    for(n=1, 15, for(k=1, n, print1(T(n, k), ", ")); print(""))
    
  • PARI
    /* Using G.f. of A(x,y): */
    T(n,k)=my(X=x+x*O(x^n),Y=y+y*O(y^k));if(n
    				
  • PARI
    /* Sum of Squares of numbers<2^n with k 1-bits: */
    T(n,k)=my(B=vector(n+1));if(n
    				

Formula

T(n,k) = (4^n-1)/3 * C(n-2, k-1) + (2^n-1)^2 * C(n-2, k-2).
G.f.: A(x,y) = x*y*(1-2*x*(1-y)) / ((1-x*(1+y))*(1-2*x*(1+y))*(1-4*x*(1+y))).
G.f. for row n: ((4^n-1)/3 + (2^n-1)^2*x)*(1+x)^(n-2).