A110200 Triangle, read by rows, where T(n,k) equals the sum of squares of numbers < 2^n having exactly k ones in their binary expansion.
1, 5, 9, 21, 70, 49, 85, 395, 535, 225, 341, 1984, 3906, 3224, 961, 1365, 9429, 24066, 29274, 17241, 3969, 5461, 43434, 135255, 215900, 188595, 86106, 16129, 21845, 196095, 717825, 1412275, 1628175, 1106445, 411995, 65025, 87381, 872788
Offset: 1
Examples
Row 4 is formed by sums of squares of numbers < 2^4: T(4,1) = 1^2 + 2^2 + 4^2 + 8^2 = 85; T(4,2) = 3^2 + 5^2 + 6^2 + 9^2 + 10^2 + 12^2 = 395; T(4,3) = 7^2 + 11^2 + 13^2 + 14^2 = 535; T(4,4) = 15^2 = 225. Triangle begins: 1; 5, 9; 21, 70, 49; 85, 395, 535, 225; 341, 1984, 3906, 3224, 961; 1365, 9429, 24066, 29274, 17241, 3969; 5461, 43434, 135255, 215900, 188595, 86106, 16129; 21845, 196095, 717825, 1412275, 1628175, 1106445, 411995, 65025; 87381, 872788, 3662848, 8541876, 12197570, 10974236, 6095208, 1915228, 261121; ... Row g.f.s are: row 1: (1 + 1*x)/(1+x); row 2: (5 + 9*x); row 3: (21 + 49*x)*(1+x); row 4: (85 + 225*x)*(1+x)^2. G.f. for row n is: ((4^n-1)/3 + (2^n-1)^2*x)*(1+x)^(n-2).
Links
- Paul D. Hanna, Rows n = 1..45, flattened.
Crossrefs
Programs
-
PARI
T(n,k)=(4^n-1)/3*binomial(n-2,k-1)+(2^n-1)^2*binomial(n-2,k-2) for(n=1, 15, for(k=1, n, print1(T(n, k), ", ")); print(""))
-
PARI
/* Using G.f. of A(x,y): */ T(n,k)=my(X=x+x*O(x^n),Y=y+y*O(y^k));if(n
-
PARI
/* Sum of Squares of numbers<2^n with k 1-bits: */ T(n,k)=my(B=vector(n+1));if(n
Formula
T(n,k) = (4^n-1)/3 * C(n-2, k-1) + (2^n-1)^2 * C(n-2, k-2).
G.f.: A(x,y) = x*y*(1-2*x*(1-y)) / ((1-x*(1+y))*(1-2*x*(1+y))*(1-4*x*(1+y))).
G.f. for row n: ((4^n-1)/3 + (2^n-1)^2*x)*(1+x)^(n-2).
Comments