A110205 Triangle, read by rows, where T(n,k) equals the sum of cubes of numbers < 2^n having exactly k ones in their binary expansion.
1, 9, 27, 73, 368, 343, 585, 3825, 6615, 3375, 4681, 36394, 88536, 86614, 29791, 37449, 332883, 1024002, 1449198, 970677, 250047, 299593, 2979420, 10970133, 20078192, 19714083, 9974580, 2048383, 2396745, 26298405, 112122225, 250021125, 320944275, 239783895, 97221555, 16581375
Offset: 1
Examples
Row 4 is formed by sums of cubes of numbers < 2^4: T(4,1) = 1^3 + 2^3 + 4^3 + 8^3 = 585; T(4,2) = 3^3 + 5^3 + 6^3 + 9^3 + 10^3 + 12^3 = 3825; T(4,3) = 7^3 + 11^3 + 13^3 + 14^3 = 6615; T(4,4) = 15^3 = 3375. Triangle begins: 1; 9, 27; 73, 368, 343; 585, 3825, 6615, 3375; 4681, 36394, 88536, 86614, 29791; 37449, 332883, 1024002, 1449198, 970677, 250047; 299593, 2979420, 10970133, 20078192, 19714083, 9974580, 2048383; 2396745, 26298405, 112122225, 250021125, 320944275, 239783895, 97221555, 16581375; ... Row g.f.s are: row 1: (1 + 2*x + 1*x^2)/(1+x)^2; row 2: (9 + 36*x + 27*x^2)/(1+x); row 3: (73 + 368*x + 343*x^2); row 4: (585 + 3240*x + 3375*x^2)*(1+x). G.f. for row n is: ((8^n-1)/7 + ((2^n-1)*(4^n-1)-(8^n-1)/7)*x + (2^n-1)^3*x^2)*(1+x)^(n-3).
Links
- Paul D. Hanna, Rows n = 1..45, flattened.
Programs
-
Magma
b:= func< n,k | Binomial(n-3, k) >; A110205:= func< n,k | (8^n-1)/7*(b(n,k-1) -b(n,k-2)) +(2^n-1)^2*((2^n+1)*b(n,k-2) +(2^n-1)*b(n,k-3)) >; [A110205(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 03 2024
-
Mathematica
b[n_, k_]= Binomial[n-3, k]; T[n_, k_]:= (8^n-1)/7*(b[n,k-1] -b[n,k-2]) + (2^n-1)^2*((2^n+1)*b[n,k-2] + (2^n-1)*b[n,k-3]); A110205[n_, k_]:= If[n<3, T[n,k]/2, T[n,k]]; Table[A110205[n,k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, Oct 03 2024 *)
-
PARI
T(n,k)=(8^n-1)/7*binomial(n-3,k-1)+((2^n-1)*(4^n-1)-(8^n-1)/7)*binomial(n-3,k-2) +(2^n-1)^3*binomial(n-3,k-3)
-
PARI
/* Sum of cubes of numbers<2^n with k 1-bits: */ T(n,k)=local(B=vector(n+1));if(n
-
SageMath
def b(n,k): return binomial(n-3, k) def A110205(n,k): return (8^n-1)/7*(b(n,k-1) - b(n,k-2)) + (2^n-1)^2*((2^n+1)*b(n,k-2) + (2^n-1)*b(n,k-3)) flatten([[A110205(n,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 03 2024
Formula
T(n, k) = (8^n-1)/7*C(n-3, k-1) + ((2^n-1)*(4^n-1)-(8^n-1)/7)*C(n-3, k-2) + (2^n-1)^3*C(n-3, k-3).
G.f. for row n: ((8^n-1)/7 + ((2^n-1)*(4^n-1)-(8^n-1)/7)*x + (2^n-1)^3*x^2)*(1+x)^(n-3).
Comments