A110210 a(n+3) = 6*a(n) - 5*a(n+2), a(0) = -1, a(1) = 1, a(2) = -5.
-1, 1, -5, 19, -89, 415, -1961, 9271, -43865, 207559, -982169, 4647655, -21992921, 104071591, -492472025, 2330402599, -11027583449, 52183085095, -246933009881, 1168499548711, -5529399232985, 26165398105639, -123815993235929, 585903570781735, -2772525465274841
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (-5,0,6).
Programs
-
Maple
seriestolist(series((1+4*x)/((x-1)*(6*x^2+6*x+1)), x=0,25));
-
Mathematica
LinearRecurrence[{-5,0,6},{-1,1,-5},30] (* or *) CoefficientList[ Series[ (1+4*x)/(-1-5*x+6*x^3),{x,0,30}],x] (* Harvey P. Dale, Nov 09 2014 *)
Formula
Superseeker finds: a(n+1) - a(n) = ((-1)^n)*A094433(n+2); a(n+2) - a(n) = ((-1)^(n+1))*A086405(n+1).
G.f.: (4*x+1)/(6*x^3-5*x-1). - Harvey P. Dale, Nov 09 2014