A110210
a(n+3) = 6*a(n) - 5*a(n+2), a(0) = -1, a(1) = 1, a(2) = -5.
Original entry on oeis.org
-1, 1, -5, 19, -89, 415, -1961, 9271, -43865, 207559, -982169, 4647655, -21992921, 104071591, -492472025, 2330402599, -11027583449, 52183085095, -246933009881, 1168499548711, -5529399232985, 26165398105639, -123815993235929, 585903570781735, -2772525465274841
Offset: 0
-
seriestolist(series((1+4*x)/((x-1)*(6*x^2+6*x+1)), x=0,25));
-
LinearRecurrence[{-5,0,6},{-1,1,-5},30] (* or *) CoefficientList[ Series[ (1+4*x)/(-1-5*x+6*x^3),{x,0,30}],x] (* Harvey P. Dale, Nov 09 2014 *)
A110211
a(n+3) = 6*a(n) - 5*a(n+2), a(0) = -1, a(1) = 3, a(2) = -15.
Original entry on oeis.org
-1, 3, -15, 69, -327, 1545, -7311, 34593, -163695, 774609, -3665487, 17345265, -82078671, 388400433, -1837930575, 8697180849, -41155501647, 194749924785, -921566538831, 4360899684273, -20635998872655, 97650595130289, -462087577545807, 2186621894493105
Offset: 0
-
seriestolist(series((1+2*x)/((x-1)*(6*x^2+6*x+1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 1kbasesumseq[A*B] with A = + 'i + 'ii' + 'ij' + 'ik' and B = + .5'i - .5'j + .5'k + .5i' + .5j' - .5k' - .5'ij' - .5'ik' + .5'ji' + .5'ki' Sumtype is set to: sum[(Y[0], Y[1], Y[2]),mod(3)
-
LinearRecurrence[{-5,0,6},{-1,3,-15},30] (* Harvey P. Dale, Mar 28 2012 *)
A110212
a(n+3) = 6*a(n) - 5*a(n+2), a(0) = -1, a(1) = 5, a(2) = -25.
Original entry on oeis.org
-1, 5, -25, 119, -565, 2675, -12661, 59915, -283525, 1341659, -6348805, 30042875, -142164421, 672729275, -3183389125, 15063959099, -71283419845, 337316764475, -1596200067781, 7553299819835, -35742598512325, 169135792154939, -800359161855685, 3787340218204475
Offset: 0
-
eriestolist(series(1/((x-1)*(6*x^2+6*x+1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: 2basejsumseq[A*B] with A = + 'i + 'ii' + 'ij' + 'ik' and B = + .5'i - .5'j + .5'k + .5i' + .5j' - .5k' - .5'ij' - .5'ik' + .5'ji' + .5'ki' Sumtype is set to: sum[(Y[0], Y[1], Y[2]),mod(3)
Showing 1-3 of 3 results.
Comments