cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110232 6-almost primes p * q * r * s * t * u not relatively prime to p+q+r+s+t+u.

Original entry on oeis.org

64, 144, 160, 216, 240, 324, 336, 400, 528, 540, 560, 624, 729, 756, 784, 816, 840, 880, 900, 912, 1040, 1104, 1134, 1188, 1215, 1232, 1260, 1320, 1350, 1360, 1392, 1404, 1456, 1488, 1500, 1520, 1560, 1764, 1776, 1836, 1840, 1848, 1904, 1936, 1960, 1968
Offset: 1

Views

Author

Jonathan Vos Post, Jul 17 2005

Keywords

Comments

p, q, r, s, t, u are not necessarily distinct. The converse to this is A110231: 6-almost primes p * q * r * s * t * u which are relatively prime to p+q+r+s+t+u. A046306 is the 6-almost primes.

Examples

			160 is in this sequence because 160 = 2^5 * 5, the sum of whose prime factors is 2 + 2 + 2 + 2 + 2 + 5 = 15 = 3 * 5, which has a prime factor in common with 160.
		

Crossrefs

Programs

  • PARI
    list(lim)=my(v=List()); forprime(p=2, lim\16, forprime(q=2, min(p, lim\8\p), my(pq=p*q); forprime(r=2, min(lim\pq\4, q), my(pqr=pq*r); forprime(s=2, min(lim\pqr\2, r), my(pqrs=pqr*s); forprime(t=2,min(lim\pqrs,s), my(pqrst=pqrs*t,n); forprime(u=2,min(lim\pqrst,t), n=pqrst*u; if(gcd(n, p+q+r+s+t+u)>1, listput(v, n)))))))); Set(v) \\ Charles R Greathouse IV, Jan 31 2017

Extensions

Extended by Ray Chandler, Jul 20 2005