A110291 Riordan array (1/(1-x), x*(1+2*x)).
1, 1, 1, 1, 3, 1, 1, 3, 5, 1, 1, 3, 9, 7, 1, 1, 3, 9, 19, 9, 1, 1, 3, 9, 27, 33, 11, 1, 1, 3, 9, 27, 65, 51, 13, 1, 1, 3, 9, 27, 81, 131, 73, 15, 1, 1, 3, 9, 27, 81, 211, 233, 99, 17, 1, 1, 3, 9, 27, 81, 243, 473, 379, 129, 19, 1, 1, 3, 9, 27, 81, 243, 665, 939, 577, 163, 21, 1
Offset: 0
Examples
Rows begin 1; 1, 1; 1, 3, 1; 1, 3, 5, 1; 1, 3, 9, 7, 1; 1, 3, 9, 19, 9, 1; 1, 3, 9, 27, 33, 11, 1; 1, 3, 9, 27, 65, 51, 13, 1; 1, 3, 9, 27, 81, 131, 73, 15, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); F:= func< k | Coefficients(R!( x^k*(1+2*x)^k/(1-x) )) >; A110291:= func< n,k | F(k)[n-k+1] >; [A110291(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 05 2023 -
Mathematica
F[k_]:= CoefficientList[Series[x^k*(1+2*x)^k/(1-x), {x,0,40}], x]; A110291[n_, k_]:= F[k][[n+1]]; Table[A110291[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 05 2023 *)
-
SageMath
def p(k,x): return x^k*(1+2*x)^k/(1-x) def A110291(n,k): return ( p(k,x) ).series(x, 30).list()[n] flatten([[A110291(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 05 2023
Formula
T(n, k) = [x^n]( x^k*(1+2*x)^k/(1-x) ).
Sum_{k=0..n} T(n, k) = A000975(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A052947(n+1).
From G. C. Greubel, Jan 05 2023: (Start)
T(n, 0) = T(n, n) = 1.
T(n, n-1) = A005408(n-1).
T(2*n, n) = T(2*n+1, n) = A000244(n).
T(2*n, n+1) = A066810(n+1).
T(2*n, n-1) = A000244(n-1).
T(2*n+1, n+1) = A001047(n+1).
Sum_{k=0..n} (-1)^k * T(n, k) = A077912(n).
Sum_{k=0..n} 2^k * T(n, k) = A014335(n+2).
Sum_{k=0..n} 3^k * T(n, k) = A180146(n).
Sum_{k=0..floor(n/2)} (-1)^k * T(n-k, k) = A077890(n). (End)
Extensions
a(30) and following corrected by Georg Fischer, Oct 11 2022
Comments