cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A110292 Riordan array (1-u, u) where u=(-1 + sqrt(1+8*x))/4.

Original entry on oeis.org

1, -1, 1, 2, -3, 1, -8, 12, -5, 1, 40, -60, 26, -7, 1, -224, 336, -148, 44, -9, 1, 1344, -2016, 896, -280, 66, -11, 1, -8448, 12672, -5664, 1824, -464, 92, -13, 1, 54912, -82368, 36960, -12144, 3240, -708, 122, -15, 1, -366080, 549120, -247104, 82368, -22704, 5280, -1020, 156, -17, 1
Offset: 0

Views

Author

Paul Barry, Jul 18 2005

Keywords

Comments

Inverse of Riordan array (1/(1-x), x*(1+2*x)), A110291.

Examples

			Triangle begins as:
      1;
     -1,      1;
      2,     -3,     1;
     -8,     12,    -5,      1;
     40,    -60,    26,     -7,    1;
   -224,    336,  -148,     44,   -9,    1;
   1344,  -2016,   896,   -280,   66,  -11,   1;
  -8448,  12672, -5664,   1824, -464,   92, -13,   1;
  54912, -82368, 36960, -12144, 3240, -708, 122, -15,  1;
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    F:= func< k | Coefficients(R!( (5-Sqrt(1+8*x))*(-1+Sqrt(1+8*x) )^k/4^(k+1) )) >;
    A110292:= func< n,k | F(k)[n-k+1] >;
    [A110292(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jan 04 2023
    
  • Mathematica
    F[k_]:= CoefficientList[Series[(5-Sqrt[1+8*x])*(-1+Sqrt[1+8*x])^k/4^(k +1), {x,0,20}], x];
    A110292[n_, k_]:= F[k][[n+1]];
    Table[A110292[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 04 2023 *)
  • SageMath
    def p(k,x): return (5-sqrt(1+8*x))*(-1+sqrt(1+8*x))^k/4^(k+1)
    def A110292(n,k): return ( p(k,x) ).series(x, 30).list()[n]
    flatten([[A110292(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 04 2023

Formula

T(n, 0) = (-1)^n * 2^(n-1) * Catalan(n-1) + (3/2)*[n=0].
From G. C. Greubel, Jan 04 2023: (Start)
T(n, n) = 1.
T(n, n-1) = 1-2*n.
T(n, n-2) = 2*A028872(n).
T(n, 1) = (-1)^(n-1) * A181282(n-1), n >= 1.
Sum_{k=0..n} T(n, k) = A000007(n). (End)
Showing 1-1 of 1 results.