cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110293 a(2*n) = A001570(n), a(2*n+1) = A011943(n+1).

Original entry on oeis.org

1, 7, 13, 97, 181, 1351, 2521, 18817, 35113, 262087, 489061, 3650401, 6811741, 50843527, 94875313, 708158977, 1321442641, 9863382151, 18405321661, 137379191137, 256353060613, 1913445293767, 3570537526921, 26650854921601, 49731172316281, 371198523608647, 692665874901013
Offset: 0

Views

Author

Creighton Dement, Jul 18 2005

Keywords

Comments

See also A110294 (compare program code).

Crossrefs

Programs

  • Magma
    A001353:= func< n | Evaluate(ChebyshevSecond(n+1), 2) >;
    [(3-(-1)^n)*(2*A001353(n) - A001353(n-1))/4: n in [0..40]]; // G. C. Greubel, Jan 04 2023
    
  • Maple
    seriestolist(series((1+7*x-x^2-x^3)/((1-4*x+x^2)*(1+4*x+x^2)), x=0, 25));
  • Mathematica
    CoefficientList[Series[(1+7x-x^2-x^3)/((1-4x+x^2)(1+4x+x^2)), {x, 0, 25}], x] (* Michael De Vlieger, Nov 01 2016 *)
  • PARI
    Vec((1+7*x-x^2-x^3)/((1-4*x+x^2)*(1+4*x+x^2)) + O(x^30)) \\ Colin Barker, Nov 01 2016
    
  • SageMath
    def A001353(n): return chebyshev_U(n,2)
    [(3-(-1)^n)*(2*A001353(n) - A001353(n-1))/4 for n in range(41)] # G. C. Greubel, Jan 04 2023

Formula

G.f.: (1+7*x-x^2-x^3) / ((1-4*x+x^2)*(1+4*x+x^2)).
a(2*n+1) = (a(2*n) + a(2*n+2))/2 and see A232765 for Diophantine equation that produces a sequence related to a(n). - Richard R. Forberg, Nov 30 2013
From Colin Barker, Nov 01 2016: (Start)
a(n) = (3-(-1)^n)*((-3+2*sqrt(3))*(2-sqrt(3))^n + (3+2*sqrt(3))*(2+sqrt(3))^n )/(8*sqrt(3)).
a(n) = 14*a(n-2) - a(n-4) for n>3. (End)
a(n) = (1/4)*(3 - (-1)^n)*(2*A001353(n) - A001353(n-1)). - G. C. Greubel, Jan 04 2023