cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110296 8-almost primes p*q*r*s*t*u*v*w relatively prime to p+q+r+s+t+u+v+w.

Original entry on oeis.org

384, 640, 864, 1408, 1664, 2016, 2176, 2400, 2432, 2944, 3240, 3712, 3744, 3968, 4374, 4536, 4736, 5248, 5280, 5472, 5504, 5600, 6016, 6240, 6784, 7128, 7392, 7552, 7808, 7840, 8424, 8576, 8800, 8928, 9088, 9120, 9344, 10112, 10400, 10584, 10624
Offset: 1

Views

Author

Jonathan Vos Post, Jul 18 2005

Keywords

Comments

The primes p, q, r, s, t, u, v, w are not necessarily distinct. The 8-almost primes are A046310. The converse, A110297, is 8-almost primes p*q*r*s*t*u*v*w which are not relatively prime to p+q+r+s+t+u+v+w.

Examples

			864 is an element of this sequence because 864 = 2^5 * 3^3, so the sum of prime factors is 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3 = 19 which is prime, hence relatively prime to 864. That is the same sum of prime factors as 640 = 2^7 * 5, hence 640 is also a member of this sequence. The sum of prime factors need not be prime for this membership, for example, 2432 = 2^7 * 19 has sum of prime factors 2 + 2 + 2 + 2 + 2 + 2 + 2 + 19 = 33 = 3 * 11, which is composite, yet relatively prime to 2432.
		

Crossrefs

Programs

  • PARI
    list(lim)=my(v=List()); forprime(p=2, lim\128, forprime(q=2, min(p, lim\64\p), my(pq=p*q); forprime(r=2, min(lim\pq\32, q), my(pqr=pq*r); forprime(s=2, min(lim\pqr\16, r), my(pqrs=pqr*s); forprime(t=2, min(lim\pqrs\8, s), my(pqrst=pqrs*t); forprime(u=2, min(lim\pqrst\4, t), my(pqrstu=pqrst*u); forprime(w=2,min(lim\pqrstu\2,u), my(pqrstuw=pqrstu*w,n); forprime(x=2,min(lim\pqrstuw,w), n=pqrstuw*x; if(gcd(n, p+q+r+s+t+u+w+x)==1, listput(v, n)))))))))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Extensions

Corrected and extended by Ray Chandler, Jul 20 2005