cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110297 8-almost primes p*q*r*s*t*u*v*w not relatively prime to p+q+r+s+t+u+v+w.

Original entry on oeis.org

256, 576, 896, 960, 1296, 1344, 1440, 1600, 1944, 2112, 2160, 2240, 2496, 2916, 3024, 3136, 3168, 3264, 3360, 3520, 3600, 3648, 4000, 4160, 4416, 4704, 4752, 4860, 4896, 4928, 5040, 5400, 5440, 5568, 5616, 5824, 5952, 6000, 6080, 6561, 6624, 6804, 7056
Offset: 1

Views

Author

Jonathan Vos Post, Jul 18 2005

Keywords

Comments

The primes p, q, r, s, t, u, v, w are not necessarily distinct. The 8-almost primes are A046310. The converse, A110296, is 8-almost primes p*q*r*s*t*u*v*w which are relatively prime to p+q+r+s+t+u+v+w.

Examples

			576 = 2^6 * 3^2 is an element of this sequence because its sum of prime factors is 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 = 18 = 2 * 3^2 which is a factor of 576 and not relatively prime to 576.
		

Crossrefs

Programs

  • PARI
    list(lim)=my(v=List()); forprime(p=2, lim\128, forprime(q=2, min(p, lim\64\p), my(pq=p*q); forprime(r=2, min(lim\pq\32, q), my(pqr=pq*r); forprime(s=2, min(lim\pqr\16, r), my(pqrs=pqr*s); forprime(t=2, min(lim\pqrs\8, s), my(pqrst=pqrs*t); forprime(u=2, min(lim\pqrst\4, t), my(pqrstu=pqrst*u); forprime(w=2,min(lim\pqrstu\2,u), my(pqrstuw=pqrstu*w,n); forprime(x=2,min(lim\pqrstuw,w), n=pqrstuw*x; if(gcd(n, p+q+r+s+t+u+w+x)>1, listput(v, n)))))))))); Set(v) \\ Charles R Greathouse IV, Feb 01 2017

Extensions

Extended by Ray Chandler, Jul 20 2005