cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110311 Expansion of 1/((1+x+x^2)*(1+5*x+x^2)).

Original entry on oeis.org

1, -6, 29, -138, 660, -3162, 15151, -72594, 347819, -1666500, 7984680, -38256900, 183299821, -878242206, 4207911209, -20161313838, 96598657980, -462831976062, 2217561222331, -10624974135594, 50907309455639, -243911573142600, 1168650556257360, -5599341208144200
Offset: 0

Views

Author

Creighton Dement, Jul 19 2005

Keywords

Comments

In reference to the program code, A004254(n+1) = 1ibaseiseq[A*B](n).
Superseeker finds: a(n) + a(n+1) + a(n+2) = (-1)^n*A004254(n+3).

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1+x+x^2)*(1+5*x+x^2)) )); // G. C. Greubel, Jan 02 2023
    
  • Maple
    seriestolist(series(1/((x^2+5*x+1)*(x^2+x+1)), x=0,25));
  • Mathematica
    LinearRecurrence[{-6,-7,-6,-1}, {1,-6,29,-138}, 40] (* G. C. Greubel, Jan 02 2023 *)
  • PARI
    Vec(1/((1+x+x^2)*(1+5*x+x^2)) + O(x^25)) \\ Colin Barker, May 14 2019
    
  • SageMath
    def U(n,x): return chebyshev_U(n,x)
    def A110311(n): return (1/4)*(5*U(n, -5/2) + U(n-1, -5/2) - U(n, -1/2) - U(n-1, -1/2))
    [A110311(n) for n in range(41)] # G. C. Greubel, Jan 02 2023

Formula

a(n+2) = - 5*a(n+1) - a(n) + ((-1)^n)*A109265(n+1)/2.
a(n) = -6*a(n-1) - 7*a(n-2) - 6*a(n-3) - a(n-4) for n>3. - Colin Barker, May 14 2019
a(n) = (1/4)*(5*U(n, -5/2) + U(n-1, -5/2) - U(n, -1/2) - U(n-1, -1/2)), where U(n, x) = ChebyshevU(n, x). - G. C. Greubel, Jan 02 2023