cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110344 a(n) = Sum_{k=0..n-1} (n+k) = n(3n-1)/2 if n is even; a(n) = Sum_{k=0..n-1} (n-k) = n(n+1)/2 if n is odd.

Original entry on oeis.org

1, 5, 6, 22, 15, 51, 28, 92, 45, 145, 66, 210, 91, 287, 120, 376, 153, 477, 190, 590, 231, 715, 276, 852, 325, 1001, 378, 1162, 435, 1335, 496, 1520, 561, 1717, 630, 1926, 703, 2147, 780, 2380, 861, 2625, 946, 2882, 1035, 3151, 1128, 3432, 1225, 3725, 1326
Offset: 1

Views

Author

Amarnath Murthy, Jul 20 2005

Keywords

Examples

			a(3) = 3 + 2 +1 = 6.
a(6) = 6 + 7 + 8 + 9 + 10 + 11 = 51.
		

Crossrefs

Programs

  • Maple
    a:=proc(n) if n mod 2=0 then n*(3*n-1)/2 else n*(n+1)/2 fi end: seq(a(n),n=1..60); # Emeric Deutsch
  • Mathematica
    a[n_] := n*(2*n + (n - 1)*(-1)^n)/2; Array[a, 50] (* Amiram Eldar, Sep 11 2022 *)
  • PARI
    Vec(-x*(7*x^3+3*x^2+5*x+1)/((x-1)^3*(x+1)^3) + O(x^100)) \\ Colin Barker, Feb 17 2015

Formula

From Emeric Deutsch, Aug 01 2005: (Start)
a(2n+1) = A000217(2n+1) = (n+1)(2n+1) (triangular numbers with odd index).
a(2n) = A000326(2n) = A049452(n) = n(6n-1) (pentagonal numbers with even index).
(End)
a(n) = n*( 2*n + (n-1)*(-1)^n )/2. - Luce ETIENNE, Jul 08 2014
From Colin Barker, Feb 17 2015: (Start)
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6).
G.f.: -x*(7*x^3+3*x^2+5*x+1) / ((x-1)^3*(x+1)^3). (End)
Sum_{n>=1} 1/a(n) = 4*log(2) + 3*log(3)/2 - sqrt(3)*Pi/2. - Amiram Eldar, Sep 11 2022

Extensions

More terms from Emeric Deutsch, Aug 01 2005