cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A110345 a(n) = n + (n+1) + (n+2) + ... n terms if n is odd, else a(n) = n + (n-1) + (n-2) + ... n terms = n(n+1)/2 = n-th triangular number if n is even.

Original entry on oeis.org

1, 3, 12, 10, 35, 21, 70, 36, 117, 55, 176, 78, 247, 105, 330, 136, 425, 171, 532, 210, 651, 253, 782, 300, 925, 351, 1080, 406, 1247, 465, 1426, 528, 1617, 595, 1820, 666, 2035, 741, 2262, 820, 2501, 903, 2752, 990, 3015, 1081, 3290, 1176, 3577, 1275, 3876, 1378
Offset: 1

Views

Author

Amarnath Murthy, Jul 20 2005

Keywords

Examples

			a(3) = 3+4+5 = 12.
a(6) = 6+5+4+3+2+1 = 21.
		

Crossrefs

Programs

  • Mathematica
    For[n = 1, n < 50, n++, If[EvenQ[n], Print[n*(n + 1)/2], Print[n^2 + n*(n - 1)/2]]] (* Stefan Steinerberger, Jan 24 2006 *)

Formula

a(2n) = n*(2n+1), a(2n-1) = (2n-1)*(n-1)+(2n-1)^2. - Stefan Steinerberger, Jan 24 2006
From Bruno Berselli, Mar 19 2012: (Start)
G.f.: x*(1+3x+9x^2+x^3+2x^4)/(1-x^2)^3.
a(n) = n^2-(-1)^n*(n-1)*n/2. (End)
Sum_{n>=1} 1/a(n) = 2 + Pi/(2*sqrt(3)) + log(3*sqrt(3)/16). - Amiram Eldar, Sep 11 2022

Extensions

More terms from Stefan Steinerberger, Jan 24 2006
Showing 1-1 of 1 results.