A110390 a(n) = F(n) mod s(n) where s(n) is the sum of the digits of the n-th Fibonacci number F(n).
1, 0, 6, 5, 4, 0, 1, 3, 1, 3, 13, 0, 9, 21, 6, 14, 13, 9, 13, 2, 1, 18, 18, 9, 1, 9, 2, 3, 30, 0, 12, 21, 38, 3, 27, 38, 2, 3, 2, 13, 3, 18, 34, 1, 5, 3, 28, 0, 1, 21, 14, 38, 1, 18, 40, 1, 2, 30, 65, 21, 34, 48, 64, 55, 45, 0, 49, 33, 60, 63, 3, 24, 5, 21, 2
Offset: 7
Examples
a(9) = 34 mod 7 = 6.
Links
- Alois P. Heinz, Table of n, a(n) for n = 7..10000
Programs
-
Maple
a:= n-> (f-> irem(f, add(i, i=convert(f, base, 10))))(combinat[fibonacci](n)): seq(a(n), n=7..100); # Alois P. Heinz, Jan 05 2022
-
Mathematica
Do[k = Fibonacci[n]; Print[Mod[k, Plus @@ IntegerDigits[k]]], {n, 7, 56}] (* Ryan Propper, Aug 14 2005 *) Mod[#,Total[IntegerDigits[#]]]&/@Fibonacci[Range[7,70]] (* Harvey P. Dale, Dec 05 2015 *)
Extensions
More terms from Ryan Propper, Aug 14 2005
More terms from Harvey P. Dale, Dec 05 2015