cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A110425 The r-th term of the n-th row of the following array contains the sum of r successively decreasing integers beginning from n. 0 4,5,0,-14 1 2 1 3 3 -3 4 5 0 -14 5 7 3 -10 -35 6 9 6 -6 -30 -69 ... Sequence contains the array by rows.

Original entry on oeis.org

1, 2, 1, 3, 3, -3, 4, 5, 0, -14, 5, 7, 3, -10, -35, 6, 9, 6, -6, -30, -69, 7, 11, 9, -2, -25, -63, -119, 8, 13, 12, 2, -20, -57, -112, -188, 9, 15, 15, 6, -15, -51, -105, -180, -279, 10, 17, 18, 10, -10, -45, -98, -172, -270, -395, 11, 19, 21, 14, -5, -39, -91, -164, -261, -385, -539, 12, 21, 24, 18, 0, -33, -84, -156, -252
Offset: 1

Views

Author

Amarnath Murthy, Aug 01 2005

Keywords

Examples

			The r-th term of the n-th row of the following array contains the sum of r successively decreasing integers beginning from n. 0<r<=n.
e.g. the row corresponding to 4 contains
4, (3+2),{(1) +(0)+(-1)}, {(-2)+(-3)+(-4)+(-5)} ----> 4,5,0,-14
1
2 1
3 3 -3
4 5 0 -14
5 7 3 -10 -35
Sequence contains the array by rows.
		

Crossrefs

Extensions

More terms from Joshua Zucker, May 10 2006

A110426 The r-th term of the n-th row of the following array contains the sum of r successively decreasing integers beginning from n, 0 < r <= n (see Example).

Original entry on oeis.org

1, 3, 3, -5, -30, -84, -182, -342, -585, -935, -1419, -2067, -2912, -3990, -5340, -7004, -9027, -11457, -14345, -17745, -21714, -26312, -31602, -37650, -44525, -52299, -61047, -70847, -81780, -93930, -107384, -122232, -138567, -156485, -176085, -197469, -220742, -246012, -273390, -302990
Offset: 1

Views

Author

Amarnath Murthy, Aug 01 2005

Keywords

Examples

			The r-th term of the n-th row of the following array contains the sum of r successively decreasing integers beginning from n, 0 < r <=n.
E.g., the row corresponding to 4 contains 4, (3+2),{(1) +(0)+(-1)}, {(-2)+(-3)+(-4)+(-5)} ----> 4,5,0,-14
  1
  2 1
  3 3 -3
  4 5 0 -14
  5 7 3 -10 -35
  6 9 6 -6 -30 -69
  ...
Sequence contains the row sums.
		

Crossrefs

Programs

  • Mathematica
    A110426[n_] := n*(n + 1)*(2 - (n - 3)*n)/8; Array[A110426, 50] (* or *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {1, 3, 3, -5, -30}, 50] (* Paolo Xausa, Aug 26 2025 *)
  • PARI
    Vec(x*(1 - 2*x - 2*x^2)/(1 - x)^5 + O(x^50)) \\ Colin Barker, May 27 2017

Formula

a(n) = Sum_{i=(2-n)*(n+1)/2..n} i = (-n^4 + 2*n^3 + 5*n^2 + 2*n)/8. - Theresa Guinard, Nov 15 2013
a(n) = A000330(n) - A000914(n-1). - J. M. Bergot, May 27 2017
From Colin Barker, May 27 2017: (Start)
G.f.: x*(1 - 2*x - 2*x^2)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5. (End)
E.g.f.: -x*(-8 - 4*x + 4*x^2 + x^3)*exp(x)/8. - Elmo R. Oliveira, Aug 24 2025

Extensions

More terms from Joshua Zucker, May 10 2006

A144204 Array A(k,n) = (n+k-2)*(n-1) - 1 (k >= 1, n >= 1) read by antidiagonals.

Original entry on oeis.org

-1, -1, 0, -1, 1, 3, -1, 2, 5, 8, -1, 3, 7, 11, 15, -1, 4, 9, 14, 19, 24, -1, 5, 11, 17, 23, 29, 35, -1, 6, 13, 20, 27, 34, 41, 48, -1, 7, 15, 23, 31, 39, 47, 55, 63, -1, 8, 17, 26, 35, 44, 53, 62, 71, 80, -1, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, -1, 10, 21, 32, 43, 54, 65, 76, 87
Offset: 1

Views

Author

Jonathan Vos Post, Sep 13 2008

Keywords

Comments

Arises in complete intersection threefolds,
Also can be produced as a triangle read by rows: a(n, k) = nk - (n + k). - Alonso del Arte, Jul 09 2009
Kosta: Let X be a complete intersection of two hypersurfaces F_n and F_k in the projective space P^5 of degree n and k respectively. with n=>k, such that the singularities of X are nodal and F_k is smooth. We prove that if the threefold X has at most (n+k-2)*(n-1) - 1 singular points, then it is factorial.

Examples

			From _R. J. Mathar_, Jul 10 2009: (Start)
The rows A(n,1), A(n,2), A(n,3), etc., are :
.-1...0...3...8..15..24..35..48..63..80..99.120.143.168 A067998
.-1...1...5..11..19..29..41..55..71..89.109.131.155.181 A028387
.-1...2...7..14..23..34..47..62..79..98.119.142.167.194 A008865
.-1...3...9..17..27..39..53..69..87.107.129.153.179.207 A014209
.-1...4..11..20..31..44..59..76..95.116.139.164.191.220 A028875
.-1...5..13..23..35..49..65..83.103.125.149.175.203.233 A108195
.-1...6..15..26..39..54..71..90.111.134.159.186.215.246
.-1...7..17..29..43..59..77..97.119.143.169.197.227.259
.-1...8..19..32..47..64..83.104.127.152.179.208.239.272
.-1...9..21..35..51..69..89.111.135.161.189.219.251.285
.-1..10..23..38..55..74..95.118.143.170.199.230.263.298
.-1..11..25..41..59..79.101.125.151.179.209.241.275.311
.-1..12..27..44..63..84.107.132.159.188.219.252.287.324
.-1..13..29..47..67..89.113.139.167.197.229.263.299.337 Cf. A126719.
(End)
As a triangle:
. 0
. 1, 3
. 2, 5, 8
. 3, 7, 11, 15
. 4, 9, 14, 19, 24
. 5, 11, 17, 23, 29, 35
. 6, 13, 20, 27, 34, 41, 48
. 7, 15, 23, 31, 39, 47, 55, 63
. 8, 17, 26, 35, 44, 53, 62, 71, 80
		

Crossrefs

Row 1 = A067998(n) for n>0. Row 2 = A028387(n) for n>0.Column 1 = -A000012(n). Column 2 = A001477. Column 3 = A005408(k). Column 4 = A016789(k+1). Column 5 = A004767(k+2). Column 6 = A016897(k+3). Column 7 = A016969(k+4). Column 8 = A017053(k+5). Column 9 = A004771(k+6). Column 10 = A017257(k+7).

Programs

  • Maple
    A := proc(k,n) (n+k-2)*(n-1)-1 ; end: for d from 1 to 13 do for n from 1 to d do printf("%d,",A(d-n+1,n)) ; od: od: # R. J. Mathar, Jul 10 2009
  • Mathematica
    a[n_, k_] := a[n, k] = n*k - (n + k); ColumnForm[Table[a[n, k], {n, 10}, {k, n}], Center] (* Alonso del Arte, Jul 09 2009 *)

Formula

A[k,n] = (n+k-2)*(n-1) - 1.
Antidiagonal sum: Sum_{n=1..d} A(d-n+1,n) = d*(d^2-2d-1)/2 = -A110427(d). - R. J. Mathar, Jul 10 2009

Extensions

Duplicate of 6th antidiagonal removed by R. J. Mathar, Jul 10 2009
Keyword:tabl added by R. J. Mathar, Jul 23 2009
Edited by N. J. A. Sloane, Sep 14 2009. There was a comment that the defining formula was wrong, but it is perfectly correct.

A214446 n*(n^2-2*n-1).

Original entry on oeis.org

-2, -2, 6, 28, 70, 138, 238, 376, 558, 790, 1078, 1428, 1846, 2338, 2910, 3568, 4318, 5166, 6118, 7180, 8358, 9658, 11086, 12648, 14350, 16198, 18198, 20356, 22678, 25170, 27838, 30688, 33726, 36958, 40390, 44028, 47878
Offset: 1

Views

Author

Marco Piazzalunga, Jul 18 2012

Keywords

Programs

Formula

a(n) = -2*A110427(n). G.f. 2*x*(-1+3*x+x^2) / (x-1)^4 . - R. J. Mathar, Jul 18 2012

A297477 Triangle read by rows: T(n, k) gives the coefficients of x^k of the characteristic polynomial P(n, x) of the n X n matrix M with entries M(i, j) = 1 if i = 1 or j = 1, -1 if i = j > 1, and 0 otherwise. T(0, 0) := 0.

Original entry on oeis.org

0, 1, -1, -2, 0, 1, 3, 3, -1, -1, -4, -8, -3, 2, 1, 5, 15, 14, 2, -3, -1, -6, -24, -35, -20, 0, 4, 1, 7, 35, 69, 65, 25, -3, -5, -1, -8, -48, -119, -154, -105, -28, 7, 6, 1, 9, 63, 188, 308, 294, 154, 28, -12, -7, -1, -10, -80, -279, -552, -672, -504, -210, -24, 18, 8, 1
Offset: 0

Views

Author

Mats Granvik, Dec 30 2017

Keywords

Comments

The norm of the matrix M appears to be sqrt(n), where with norm is meant the eigenvalue of the largest magnitude, negative or positive. Row sums appear to be A085750 [see below for the proof].
Also the coefficients of the characteristic polynomial of the matrix defined by the recurrence: A(n, k) = if n < k then if and(n > 1, k > 1) then Sum_{i=1..k-1} -A(k-i, n) else 0 else if and(n > 1, k > 1) then Sum_{i=1..n-1} -A(n-i, k) else 0.
By letting the upper summation indexes "k-1" and "n-1" in the recurrence above, change place with each other one gets the number theoretic matrix A191898, and it appears that the eigenvalue norm sqrt(n) of this matrix is a lower bound for the eigenvalue norm of matrix A191898 which in turn for n>10 appears to be close to A007917, the previous prime sequence. If the eigenvalue norm of matrix A191898 also can be proven to be less than n+1, then one could say that there is always a prime gap between sqrt(n) and n+1.
From Wolfdieter Lang, Feb 02 2018: (Start)
The characteristic polynomial P(n, x) = Det(M_n - x*1_n), with the n X n matrix M_n defined in the name and 1_n the n dimensional unit matrix, satisfies, after expanding the last row, the recurrence: P(n, x) = -z*P(n-1, x) + (-1)^(n-1)*z^(n-2), for n >= 2, and input P(1, x) = y, where y = 1-x and z = 1+x. The solution is P(n, x) = y*(-z)^(n-1) - (n-1)*(-z)^(n-2) = (-1)^n*(1 + x)^(n-2)*(x^2 - n), for n >= 1. After picking the coefficient of x^k this becomes the formula for T(n, k) given in the formula section.
The Determinant of M_n is P(n, 0) = T(n, 0) = (-1)^n*n = A181983(n).
The eigenvalues of M_n are +1 for n = 1 and for n >= 2 they are +sqrt(n), -sqrt(n), and n-2 times -1.
Therefore the spectral radius (absolute value of the maximal eigenvalue) is rho_n = sqrt(n), and the spectral norm of M_n (square root of the maximal eigenvalue of (M_n)^+ M_n) is also sqrt(n), for n >= 1. See the conjecture in the first comment above.
The square of the Frobenius norm (aka Hilbert-Schmidt norm) of M_n is max_{i,j=1..n} |M_n(i,j)|^2 = 3*n - 2 = A016777(n-1), for n >= 1.
The row sums are P(n, 1) = (-1)^(n-1)*(n-1)*2^(n-2) = A085750(n), for n >= 1, and for n=0 the row sum is 0. The alternating row sums are P(n, -1) = 2 for n=1, -1 for n = 2, and zero otherwise.
The column sequence (without leading zero) for k = 1 is (-1)^(n+1)*n*(n-2), for n >= 1, which is -A131386(n). For k = 2 it is (-1)^n*(1 - n*binomial(n-2, 2)) for n >= 2 which is (-1)^n*A110427(n-1). Other columns follow from the formula for T(n, k). (End)

Examples

			The matrix for these characteristic polynomials starts:
  {
  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
  {1, -1, 0, 0, 0, 0, 0, 0, 0, 0},
  {1, 0, -1, 0, 0, 0, 0, 0, 0, 0},
  {1, 0, 0, -1, 0, 0, 0, 0, 0, 0},
  {1, 0, 0, 0, -1, 0, 0, 0, 0, 0},
  {1, 0, 0, 0, 0, -1, 0, 0, 0, 0},
  {1, 0, 0, 0, 0, 0, -1, 0, 0, 0},
  {1, 0, 0, 0, 0, 0, 0, -1, 0, 0},
  {1, 0, 0, 0, 0, 0, 0, 0, -1, 0},
  {1, 0, 0, 0, 0, 0, 0, 0, 0, -1}
  }
----------------------------------------------------------------------
The table T(n, k) begins:
  n\k   0   1    2    3    4    5    6   7   8   9  10 ...
  0:    0
  1:    1  -1
  2:   -2   0    1
  3:    3   3   -1   -1
  4:   -4  -8   -3    2    1
  5;    5  15   14    2   -3   -1
  6:   -6 -24  -35  -20    0    4    1
  7:    7  35   69   65   25   -3   -5  -1
  8:   -8 -48 -119 -154 -105  -28    7   6   1
  9:    9  63  188  308  294  154   28 -12  -7  -1
  10: -10 -80 -279 -552 -672 -504 -210 -24  18   8   1
  ... reformatted by _Wolfdieter Lang_, Feb 02 2018.
		

Crossrefs

Cf. A016777, A085750 (row sums), A067998, A110427 (column k=2), -A131386 (column k=1), A181983 (Det M_n), A191898.

Programs

  • Maple
    f:= proc(n) local M,P,lambda,k;
      M:= Matrix(n,n, proc(i,j) if i=1 or j=1 then 1 elif i=j then -1 else 0 fi end proc);
      P:= (-1)^n*LinearAlgebra:-CharacteristicPolynomial(M,lambda);
      seq(coeff(P,lambda,k),k=0..n)
    end proc:
    f(0):= 0:
    for n from 0 to 10 do f(n) od; # Robert Israel, Feb 02 2018
  • Mathematica
    Clear[A, x, t];
    Table[t[n_, 1] = 1;
      t[1, k_] = 1;
      t[n_, k_] :=
       t[n, k] =
        If[n < k,
         If[And[n > 1, k > 1], Sum[-t[k - i, n], {i, 1, k - 1}], 0],
         If[And[n > 1, k > 1], Sum[-t[n - i, k], {i, 1, n - 1}], 0]];
      A = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}];
      CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}];
    Flatten[%]

Formula

From Wolfdieter Lang, Feb 02 2018: (Start)
T(n, k) = [x*k] P(n, x), for n >= 1, with P(n, x) = Det(M_n - x*1_n), and the matrix M_n defined in the name (1_n is the n dimensional unit matrix). T(0, 0):= 0.
T(n, k) = (-1)^(n+1)*n for k = 0, (-1)^(n+1)*n*(n-2) for k = 1, and (-1)^n*(binomial(n-2, k-2) - n*binomial(n-2, k)) for k >= 2, with n >= 0 and 0 <= k <= n. T(n, k) = 0 for k > n. (End)

Extensions

Edited by Wolfdieter Lang, Feb 02 2018
Showing 1-5 of 5 results.