A110425
The r-th term of the n-th row of the following array contains the sum of r successively decreasing integers beginning from n. 0 4,5,0,-14 1 2 1 3 3 -3 4 5 0 -14 5 7 3 -10 -35 6 9 6 -6 -30 -69 ... Sequence contains the array by rows.
Original entry on oeis.org
1, 2, 1, 3, 3, -3, 4, 5, 0, -14, 5, 7, 3, -10, -35, 6, 9, 6, -6, -30, -69, 7, 11, 9, -2, -25, -63, -119, 8, 13, 12, 2, -20, -57, -112, -188, 9, 15, 15, 6, -15, -51, -105, -180, -279, 10, 17, 18, 10, -10, -45, -98, -172, -270, -395, 11, 19, 21, 14, -5, -39, -91, -164, -261, -385, -539, 12, 21, 24, 18, 0, -33, -84, -156, -252
Offset: 1
The r-th term of the n-th row of the following array contains the sum of r successively decreasing integers beginning from n. 0<r<=n.
e.g. the row corresponding to 4 contains
4, (3+2),{(1) +(0)+(-1)}, {(-2)+(-3)+(-4)+(-5)} ----> 4,5,0,-14
1
2 1
3 3 -3
4 5 0 -14
5 7 3 -10 -35
Sequence contains the array by rows.
A110426
The r-th term of the n-th row of the following array contains the sum of r successively decreasing integers beginning from n, 0 < r <= n (see Example).
Original entry on oeis.org
1, 3, 3, -5, -30, -84, -182, -342, -585, -935, -1419, -2067, -2912, -3990, -5340, -7004, -9027, -11457, -14345, -17745, -21714, -26312, -31602, -37650, -44525, -52299, -61047, -70847, -81780, -93930, -107384, -122232, -138567, -156485, -176085, -197469, -220742, -246012, -273390, -302990
Offset: 1
The r-th term of the n-th row of the following array contains the sum of r successively decreasing integers beginning from n, 0 < r <=n.
E.g., the row corresponding to 4 contains 4, (3+2),{(1) +(0)+(-1)}, {(-2)+(-3)+(-4)+(-5)} ----> 4,5,0,-14
1
2 1
3 3 -3
4 5 0 -14
5 7 3 -10 -35
6 9 6 -6 -30 -69
...
Sequence contains the row sums.
-
A110426[n_] := n*(n + 1)*(2 - (n - 3)*n)/8; Array[A110426, 50] (* or *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 3, 3, -5, -30}, 50] (* Paolo Xausa, Aug 26 2025 *)
-
Vec(x*(1 - 2*x - 2*x^2)/(1 - x)^5 + O(x^50)) \\ Colin Barker, May 27 2017
A144204
Array A(k,n) = (n+k-2)*(n-1) - 1 (k >= 1, n >= 1) read by antidiagonals.
Original entry on oeis.org
-1, -1, 0, -1, 1, 3, -1, 2, 5, 8, -1, 3, 7, 11, 15, -1, 4, 9, 14, 19, 24, -1, 5, 11, 17, 23, 29, 35, -1, 6, 13, 20, 27, 34, 41, 48, -1, 7, 15, 23, 31, 39, 47, 55, 63, -1, 8, 17, 26, 35, 44, 53, 62, 71, 80, -1, 9, 19, 29, 39, 49, 59, 69, 79, 89, 99, -1, 10, 21, 32, 43, 54, 65, 76, 87
Offset: 1
From _R. J. Mathar_, Jul 10 2009: (Start)
The rows A(n,1), A(n,2), A(n,3), etc., are :
.-1...0...3...8..15..24..35..48..63..80..99.120.143.168 A067998
.-1...1...5..11..19..29..41..55..71..89.109.131.155.181 A028387
.-1...2...7..14..23..34..47..62..79..98.119.142.167.194 A008865
.-1...3...9..17..27..39..53..69..87.107.129.153.179.207 A014209
.-1...4..11..20..31..44..59..76..95.116.139.164.191.220 A028875
.-1...5..13..23..35..49..65..83.103.125.149.175.203.233 A108195
.-1...6..15..26..39..54..71..90.111.134.159.186.215.246
.-1...7..17..29..43..59..77..97.119.143.169.197.227.259
.-1...8..19..32..47..64..83.104.127.152.179.208.239.272
.-1...9..21..35..51..69..89.111.135.161.189.219.251.285
.-1..10..23..38..55..74..95.118.143.170.199.230.263.298
.-1..11..25..41..59..79.101.125.151.179.209.241.275.311
.-1..12..27..44..63..84.107.132.159.188.219.252.287.324
.-1..13..29..47..67..89.113.139.167.197.229.263.299.337 Cf. A126719.
(End)
As a triangle:
. 0
. 1, 3
. 2, 5, 8
. 3, 7, 11, 15
. 4, 9, 14, 19, 24
. 5, 11, 17, 23, 29, 35
. 6, 13, 20, 27, 34, 41, 48
. 7, 15, 23, 31, 39, 47, 55, 63
. 8, 17, 26, 35, 44, 53, 62, 71, 80
Cf.
A000012,
A001477,
A004767,
A004771,
A005408,
A016789,
A016897,
A016969,
A017053,
A028387,
A067998,
A126719.
-
A := proc(k,n) (n+k-2)*(n-1)-1 ; end: for d from 1 to 13 do for n from 1 to d do printf("%d,",A(d-n+1,n)) ; od: od: # R. J. Mathar, Jul 10 2009
-
a[n_, k_] := a[n, k] = n*k - (n + k); ColumnForm[Table[a[n, k], {n, 10}, {k, n}], Center] (* Alonso del Arte, Jul 09 2009 *)
Duplicate of 6th antidiagonal removed by
R. J. Mathar, Jul 10 2009
Edited by
N. J. A. Sloane, Sep 14 2009. There was a comment that the defining formula was wrong, but it is perfectly correct.
A214446
n*(n^2-2*n-1).
Original entry on oeis.org
-2, -2, 6, 28, 70, 138, 238, 376, 558, 790, 1078, 1428, 1846, 2338, 2910, 3568, 4318, 5166, 6118, 7180, 8358, 9658, 11086, 12648, 14350, 16198, 18198, 20356, 22678, 25170, 27838, 30688, 33726, 36958, 40390, 44028, 47878
Offset: 1
A297477
Triangle read by rows: T(n, k) gives the coefficients of x^k of the characteristic polynomial P(n, x) of the n X n matrix M with entries M(i, j) = 1 if i = 1 or j = 1, -1 if i = j > 1, and 0 otherwise. T(0, 0) := 0.
Original entry on oeis.org
0, 1, -1, -2, 0, 1, 3, 3, -1, -1, -4, -8, -3, 2, 1, 5, 15, 14, 2, -3, -1, -6, -24, -35, -20, 0, 4, 1, 7, 35, 69, 65, 25, -3, -5, -1, -8, -48, -119, -154, -105, -28, 7, 6, 1, 9, 63, 188, 308, 294, 154, 28, -12, -7, -1, -10, -80, -279, -552, -672, -504, -210, -24, 18, 8, 1
Offset: 0
The matrix for these characteristic polynomials starts:
{
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{1, -1, 0, 0, 0, 0, 0, 0, 0, 0},
{1, 0, -1, 0, 0, 0, 0, 0, 0, 0},
{1, 0, 0, -1, 0, 0, 0, 0, 0, 0},
{1, 0, 0, 0, -1, 0, 0, 0, 0, 0},
{1, 0, 0, 0, 0, -1, 0, 0, 0, 0},
{1, 0, 0, 0, 0, 0, -1, 0, 0, 0},
{1, 0, 0, 0, 0, 0, 0, -1, 0, 0},
{1, 0, 0, 0, 0, 0, 0, 0, -1, 0},
{1, 0, 0, 0, 0, 0, 0, 0, 0, -1}
}
----------------------------------------------------------------------
The table T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 0
1: 1 -1
2: -2 0 1
3: 3 3 -1 -1
4: -4 -8 -3 2 1
5; 5 15 14 2 -3 -1
6: -6 -24 -35 -20 0 4 1
7: 7 35 69 65 25 -3 -5 -1
8: -8 -48 -119 -154 -105 -28 7 6 1
9: 9 63 188 308 294 154 28 -12 -7 -1
10: -10 -80 -279 -552 -672 -504 -210 -24 18 8 1
... reformatted by _Wolfdieter Lang_, Feb 02 2018.
-
f:= proc(n) local M,P,lambda,k;
M:= Matrix(n,n, proc(i,j) if i=1 or j=1 then 1 elif i=j then -1 else 0 fi end proc);
P:= (-1)^n*LinearAlgebra:-CharacteristicPolynomial(M,lambda);
seq(coeff(P,lambda,k),k=0..n)
end proc:
f(0):= 0:
for n from 0 to 10 do f(n) od; # Robert Israel, Feb 02 2018
-
Clear[A, x, t];
Table[t[n_, 1] = 1;
t[1, k_] = 1;
t[n_, k_] :=
t[n, k] =
If[n < k,
If[And[n > 1, k > 1], Sum[-t[k - i, n], {i, 1, k - 1}], 0],
If[And[n > 1, k > 1], Sum[-t[n - i, k], {i, 1, n - 1}], 0]];
A = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}];
CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}];
Flatten[%]
Showing 1-5 of 5 results.
Comments