A110438 Triangular array giving the number of NSEW unit step lattice paths of length n with terminal height k subject to the following restrictions. The paths start at the origin (0,0) and take unit steps (0,1)=N(north), (0,-1)=S(south), (1,0)=E(east) and (-1,0)=W(west) such that no paths pass below the x-axis, no paths begin with W, all W steps remain on the x-axis and there are no NS steps.
1, 1, 1, 2, 2, 1, 5, 4, 3, 1, 12, 10, 7, 4, 1, 29, 25, 18, 11, 5, 1, 71, 62, 47, 30, 16, 6, 1, 175, 155, 121, 82, 47, 22, 7, 1, 434, 389, 311, 220, 135, 70, 29, 8, 1, 1082, 979, 799, 584, 378, 212, 100, 37, 9, 1, 2709, 2471, 2051, 1541, 1039, 620, 320, 138, 46, 10, 1
Offset: 0
Examples
Triangle starts: 1; 1,1; 2,2,1; 5,4,3,1; 12,10,7,4,1;
References
- A. Nkwanta, A Riordan matrix approach to unifying a selected class of combinatorial arrays, Congressus Numerantium, 160 (2003), pp. 33-55.
- A. Nkwanta, A note on Riordan matrices, Contemporary Mathematics Series, AMS, 252 (1999), pp. 99-107.
- A. Nkwanta, Lattice paths, generating functions and the Riordan group, Ph.D. Thesis, Howard University, Washington DC, 1997.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
- Tian-Xiao He, A-sequences, Z-sequence, and B-sequences of Riordan matrices, Discrete Mathematics 343.3 (2020): 111718.
Programs
-
Maple
A110438 := proc (n, k) add((-1)^binomial(n-i+1, 2)*binomial(floor((1/2)*n+(1/2)*i), i)*add(binomial(i, j)*binomial(j, floor((1/2)*j-(1/2)*k)), j = k..i), i = 0..n); end proc: seq(seq(A110438(n, k), k = 0..n), n = 0..10); # Peter Bala, Jul 14 2021
-
PARI
\\ ColGf gives g.f. of k-th column. ColGf(k,n)={my(g=(1 - x + x^2 - sqrt(1 - 2*x - x^2 - 2*x^3 + x^4 + O(x^(n-k+3))))/(2*x^2)); (1 - x)*g/(1 - x*g)*(x*g)^k} T(n,k) = {polcoef(ColGf(k,n), n)} \\ Andrew Howroyd, Mar 02 2023
Formula
Recurrence is d(0, 0) = 1, d(1, 0) = 1, d(n+1, 0) = 2*d(n, 0) + Sum_{j>=1} d(n-j, j), n>=1 for leftmost column and d(n+1, k) = d(n, k-1) + d(n, k) + Sum_{j>=1} d(n-j, k+j), n>=2, k>=1 and n>j; Riordan array d(n, k): (((1-z)/(2*z))*(sqrt(1+z+z^2)/sqrt(1-3*z+z^2) - 1), ((1-z+z^2)-sqrt(1-2*z-z^2-2*z^3+z^4))/(2*z)).
Extensions
Terms a(55) and beyond from Andrew Howroyd, Mar 02 2023
Comments