A110446 Triangle of Delannoy paths counted by number of diagonal steps not preceded by an east step.
1, 2, 1, 8, 4, 1, 32, 24, 6, 1, 136, 128, 48, 8, 1, 592, 680, 320, 80, 10, 1, 2624, 3552, 2040, 640, 120, 12, 1, 11776, 18368, 12432, 4760, 1120, 168, 14, 1, 53344, 94208, 73472, 33152, 9520, 1792, 224, 16, 1, 243392, 480096, 423936, 220416, 74592, 17136
Offset: 0
Examples
Table begins \ k...0....1....2....3....4.... n\ 0 |...1 1 |...2....1 2 |...8....4....1 3 |..32...24....6....1 4 |.136..128...48....8....1 5 |.592..680..320...80...10....1 The paths ENDD, NDDE, DEND, DNDE, DDEN, DDNE each have 2 Ds not preceded by an E, and so T(3,2)=6.
Crossrefs
Column k=0 is A006139.
Programs
-
Mathematica
T[n_, k_] := SeriesCoefficient[(1-z(4 + 2*t) - z^2 (4 - 4*t - t^2))^(-1/2), {z, 0, n}, {t, 0, k}]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 08 2016 *)
Formula
G.f. G(z, t)=Sum_{n>=k>=0}T(n, k)*z^n*t^k is given by G(z, t)= (1 - z(4 + 2*t) - z^2(4 - 4*t - t^2))^(-1/2)
Comments