A110475 Number of symbols '*' and '^' to write the canonical prime factorization of n.
0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 3, 0, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 2, 1, 1, 2, 0, 2, 1, 2, 0, 3, 0, 1, 2, 2, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 2, 0, 3, 1, 2, 1, 1, 1, 2, 0, 2, 2, 3, 0, 2, 0, 2, 2
Offset: 1
Keywords
Examples
a(208029250) = a(2*5^3*11^2*13*23^2) = 4 '*' + 3 '^' = 7.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Prime Factorization.
Crossrefs
Programs
-
Haskell
a110475 1 = 0 a110475 n = length us - 1 + 2 * length vs where (us, vs) = span (== 1) $ a118914_row n -- Reinhard Zumkeller, Mar 23 2014
-
Mathematica
A110475[n_] := 2*Length[#] - 1 - Count[#, 1] & [FactorInteger[n][[All, 2]]]; Array[A110475, 100] (* Paolo Xausa, Mar 10 2025 *)
Formula
a(n) = 0 iff n=1 or n is prime: a(A008578(n)) = 0.
a(n) = 1 iff n is a semiprime or a prime power p^e with e > 1.
From Amiram Eldar, Sep 27 2024: (Start)
a(n) = A238949(n) - 1 for n >= 2.
Comments