A110476 Table of number of partitions of an m X n rectangle, read by descending antidiagonals.
1, 2, 2, 4, 12, 4, 8, 74, 74, 8, 16, 456, 1434, 456, 16, 32, 2810, 27780, 27780, 2810, 32, 64, 17316, 538150, 1691690, 538150, 17316, 64, 128, 106706, 10424872, 103015508, 103015508, 10424872, 106706, 128, 256, 657552, 201947094, 6273056950
Offset: 1
Examples
Array A(m,n) (with rows m >= 1 and columns n >= 1) begins 1, 2, 4, 8, 16, 32, 64, 128, ... 2, 12, 74, 456, 2810, 17316, 106706, ... 4, 74, 1434, 27780, 538150, 10424872, ... 8, 456, 27780, 1691690, 103015508, ... 16, 2810, 538150, 103015508, ... 32, 17316, 10424872, ... 64, 106706, ... 128, ... ...
Links
- Walter Trump, Table of n, a(n) for n = 1..220 (first 40 terms from Hugo van der Sanden).
- Brian Kell, Values for m+n < 16 [except (7,7), (7,8) and (8,7)]
- A. Knopfmacher and M. E. Mays, Graph compositions I: Basic enumeration, Integers, 1 (2001), 1-11. [From _Brian Kell_, Oct 21 2008]
- Yulka Lipkova, Miso Forisek, Tom Zathurecky, and Davidko Pal, Delicious cake. [From _Brian Kell_, Oct 21 2008]
- J. N. Ridley and M. E. Mays, Compositions of unions of graphs, Fib. Quart., 42 (2004), 222-230. [From _Brian Kell_, Oct 21 2008]
- Frank Simon, Algebraic Methods for Computing the Reliability of Networks, Dissertation, Doctor Rerum Naturalium (Dr. rer. nat.), Fakultät Mathematik und Naturwissenschaften der Technischen Universität Dresden, 2012. - From _N. J. A. Sloane_, Jan 04 2013
- F. Simon, P. Tittmann and M. Trinks, Counting Connected Set Partitions of Graphs, Electron. J. Combin., 18(1) (2010), #P14, 12pp.
Formula
a(m,n) = a(n,m).
a(1,n) = 2^(n-1) = a(n,1).
a(2,n) = A078469(n) = a(n,2).
From Petros Hadjicostas, Feb 27 2021: (Start)
The following two equations seem to follow from the work of Brian Kell and Frank Simon:
a(3,n) = A108808(n) = a(n,3).
a(4,n) = A221157(n) = a(n,4). (End)
Extensions
Corrected by Chuck Carroll (chuck(AT)chuckcarroll.org), Jun 06 2006
Name edited by Michel Marcus, Jul 02 2020
Comments