cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110483 Continued fraction for seventh root of 2.

Original entry on oeis.org

1, 9, 1, 1, 1, 1, 5, 46, 1, 3, 2, 1, 1, 3, 1, 1, 2, 1, 22, 48, 1, 1, 5, 4, 1, 1, 1, 1, 1, 1, 2, 8, 1, 6, 1, 21, 1, 1, 1, 1, 1, 6, 1, 1, 3, 3, 1, 1, 2, 2, 2, 3, 1, 26, 1, 16, 1, 4, 21, 1, 2, 1, 1, 1, 5, 3, 7, 21, 3, 1, 1, 1, 8, 1, 8, 1, 4, 1, 24, 1, 3, 1, 6, 1, 2, 1, 5, 5, 6, 1, 12, 1, 8, 2, 2, 1, 3, 1, 1, 2
Offset: 0

Views

Author

Paul Stoeber (pstoeber(AT)uni-potsdam.de), Sep 09 2005

Keywords

Crossrefs

Programs

  • Haskell
    import Ratio
    floorRoot :: Integer -> Integer -> Integer
    floorRoot k n | k>=1 && n>=1 = h n where h x = let y=((k-1)*x+n`div`x^(k-1))`div`k in if y (Integer,Rational)
    intFrac x = let ((a,b),~(q,r)) = ((numerator x,denominator x),divMod a b) in (q,r%b)
    cf :: Rational -> Rational -> [Integer]
    cf x y = let ((xi,xf),(yi,yf)) = (intFrac x,intFrac y) in if xi==yi then xi : cf (recip xf) (recip yf) else []
    y = 2^512 -- increase to get more terms, decrease to get a quick answer
    (k,n) = (7,2) -- compute continued fraction for k-th root of n
    main = print (let x = floorRoot k (n*y^k) in cf (x%y) ((x+1)%y))
  • Mathematica
    ContinuedFraction[Surd[2,7],100] (* Harvey P. Dale, Aug 11 2017 *)