A110496 Least k such that prime(n)^3 divides binomial(2k,k).
7, 14, 63, 172, 666, 1099, 2457, 3430, 6084, 12195, 14896, 25327, 34461, 39754, 51912, 74439, 102690, 113491, 150382, 178956, 194509, 246520, 285894, 352485, 456337, 515151, 546364, 612522, 647515, 721449, 1024192, 1124046, 1285677
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..100
Programs
-
Mathematica
t3=Table[f=FactorInteger[Binomial[2n, n]]; s=Select[f, #[[2]]>2&]; If[s=={}, 0, s[[ -1, 1]]], {n, 15000}]; Table[p=Prime[i]; First[Flatten[Position[t3, p]]], {i, PrimePi[Max[t3]]}] lst={7};Do[AppendTo[lst,(DivisorSigma[3,Prime[n]])/2],{n,2,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
Formula
a(n) = (prime(n)^3 + 1)/2 = (1+A030078(n))/2 for n>1.
Product_{n>=1} (1 - 1/a(n)) = (54/49)*zeta(6)/zeta(3)^2. - Amiram Eldar, Jun 08 2022
Comments