cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110496 Least k such that prime(n)^3 divides binomial(2k,k).

Original entry on oeis.org

7, 14, 63, 172, 666, 1099, 2457, 3430, 6084, 12195, 14896, 25327, 34461, 39754, 51912, 74439, 102690, 113491, 150382, 178956, 194509, 246520, 285894, 352485, 456337, 515151, 546364, 612522, 647515, 721449, 1024192, 1124046, 1285677
Offset: 1

Views

Author

T. D. Noe, Jul 22 2005

Keywords

Comments

For prime p > (2n)^(1/3), p^3 does not divide binomial(2n,n).

Crossrefs

Cf. A110495 (binomial(2k, k) is cubefree).

Programs

  • Mathematica
    t3=Table[f=FactorInteger[Binomial[2n, n]]; s=Select[f, #[[2]]>2&]; If[s=={}, 0, s[[ -1, 1]]], {n, 15000}]; Table[p=Prime[i]; First[Flatten[Position[t3, p]]], {i, PrimePi[Max[t3]]}]
    lst={7};Do[AppendTo[lst,(DivisorSigma[3,Prime[n]])/2],{n,2,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)

Formula

a(n) = (prime(n)^3 + 1)/2 = (1+A030078(n))/2 for n>1.
Product_{n>=1} (1 - 1/a(n)) = (54/49)*zeta(6)/zeta(3)^2. - Amiram Eldar, Jun 08 2022