cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110508 Expansion of 1/(1-(x+x^2)c(2x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 1, 4, 17, 87, 490, 2945, 18517, 120340, 802005, 5451651, 37652546, 263480357, 1864065017, 13311094644, 95816113129, 694511157535, 5064818563258, 37135165923801, 273581694291309, 2024194855052180, 15034769479254861
Offset: 0

Views

Author

Paul Barry, Jul 24 2005

Keywords

Comments

Diagonal sums of A110506.

Programs

  • Mathematica
    CoefficientList[Series[1/(1-(x+x^2)*(1-Sqrt[1-8*x])/(4*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)
  • PARI
    x='x+O('x^50); Vec(1/(1-(x+x^2)*(1-sqrt(1-8*x))/(4*x))) \\ G. C. Greubel, Aug 29 2017

Formula

a(0)=1; for n>0, a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..(n-k)} j*C(2n-2k-j-1, n-k-j)*C(j, k)*2^(n-k-j)/(n-k).
Conjecture: n*(3*n-7)*a(n) -4*(3*n-4)*(2*n-5)*a(n-1) +2*n*(3*n-7) +(-45*n^2+177*n-160)*a(n-3) -4*(3*n-4)*(2*n-5)*a(n-4) = 0. - R. J. Mathar, Nov 15 2011
a(n) ~ 9 * 2^(3*n+4) / (529 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 08 2014