cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A110506 Riordan array (1/(1-xc(2x)),xc(2x)/(1-xc(2x))), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 13, 19, 7, 1, 67, 102, 44, 10, 1, 381, 593, 278, 78, 13, 1, 2307, 3640, 1795, 568, 121, 16, 1, 14589, 23231, 11849, 4051, 999, 173, 19, 1, 95235, 152650, 79750, 28770, 7820, 1598, 234, 22, 1, 636925, 1025965, 545680, 204760, 59650, 13642, 2392, 304, 25, 1
Offset: 0

Views

Author

Paul Barry, Jul 24 2005

Keywords

Comments

Deleham triangle Delta(0^n,2-0^n) [see construction in A084938]. The binomial transform of the inverse of this triangle has general element (-2)^(n-k)*C(k,n-k), that is, it is the Riordan array (1,x(1-2x)) [A110509]. Row sums are A052701. Diagonal sums are A110508. Inverse is A110511.

Examples

			Rows begin:
1;
1,1;
3,4,1;
13,19,7,1;
67,102,44,10,1;
381,593,278,78,13,1;
From _Philippe Deléham_, Dec 01 2015: (Start)
Production matrix begins:
1, 1
2, 3, 1
2, 4, 3, 1
2, 4, 4, 3, 1
2, 4, 4, 4, 3, 1
2, 4, 4, 4, 4, 3, 1
2, 4, 4, 4, 4, 4, 3, 1
(End)
		

Crossrefs

Programs

  • Mathematica
    {{1}}~Join~Table[Sum[j Binomial[2 n - j - 1, n - j] Binomial[j, k] 2^(n - j), {j, 0, n}]/n, {n, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 01 2015 *)
  • PARI
    tabl(nn)= {for (n=0, nn, for (k=0, n, if (n==0, x = 0^k, x = sum(j=0, n, j*binomial(2*n-j-1, n-j)*binomial(j, k)*2^(n-j)/n)); print1(x, ", ");); print(););} \\ Michel Marcus, Jun 18 2015

Formula

T(0,0) = 1, T(n,k) = (Sum_{j=0..n} j*C(2*n-j-1,n-j) * C(j,k) * 2^(n-j))/n.
T(n,k) = (-1)^(n-k)*A114189(n,k). - Philippe Deléham, Mar 24 2007

A114190 Expansion of 1/(1+x*(1-x)*c(-2*x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, -1, 4, -17, 87, -490, 2945, -18517, 120340, -802005, 5451651, -37652546, 263480357, -1864065017, 13311094644, -95816113129, 694511157535, -5064818563258, 37135165923801, -273581694291309, 2024194855052180, -15034769479254861, 112062948489702251, -837936593024505298
Offset: 0

Views

Author

Paul Barry, Nov 16 2005

Keywords

Comments

Diagonal sums of A114189. Alternating sign version of A110508.

Programs

  • Mathematica
    CoefficientList[Series[4/(3+x+(1-x)*Sqrt[1+8*x]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 03 2014 *)
  • PARI
    x='x+O('x^50); Vec(4/(3+x+(1-x)*sqrt(1+8*x))) \\ G. C. Greubel, Mar 17 2017

Formula

G.f.: 4/(3+x+(1-x)*sqrt(1+8*x)).
Conjecture: n*a(n) +(7n-10)*a(n-1) +2*(14-3n)*a(n-2) +(13n-20)*a(n-3) +(66-23n)*a(n-4) +4*(2n-7)*a(n-5)=0. - R. J. Mathar, Dec 10 2011
a(n) ~ 9 * (-1)^n * 2^(3*n+4) / (529 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 03 2014
Showing 1-2 of 2 results.