cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110510 Riordan array (1, x*c(2x)), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 8, 4, 1, 0, 40, 20, 6, 1, 0, 224, 112, 36, 8, 1, 0, 1344, 672, 224, 56, 10, 1, 0, 8448, 4224, 1440, 384, 80, 12, 1, 0, 54912, 27456, 9504, 2640, 600, 108, 14, 1, 0, 366080, 183040, 64064, 18304, 4400, 880, 140, 16, 1, 0, 2489344, 1244672, 439296
Offset: 0

Views

Author

Paul Barry, Jul 24 2005

Keywords

Comments

Row sums are C(2;n), A064062. Inverse is A110509. Diagonal sums are A108308. [Corrected by Philippe Deléham, Nov 09 2007]
Triangle T(n,k), 0 <= k <= n, read by rows, given by (0, 2, 2, 2, 2, 2, 2, 2, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 23 2014

Examples

			Rows begin
  1;
  0,   1;
  0,   2,   1;
  0,   8,   4,   1;
  0,  40,  20,   6,   1;
  0, 224, 112,  36,   8,   1;
  ...
Production matrix begins:
  0,  1;
  0,  2,  1;
  0,  4,  2,  1;
  0,  8,  4,  2,  1;
  0, 16,  8,  4,  2,  1;
  0, 32, 16,  8,  4,  2,  1;
  0, 64, 32, 16,  8,  4,  2,  1;
  ... - _Philippe Deléham_, Sep 23 2014
		

Programs

  • Mathematica
    T[n_, k_] := (k/n)*Binomial[2*n - k - 1, n - k]*2^(n - k); Join[{1}, Table[T[n, k], {n, 1, 10}, {k, 0, n}]] // Flatten (* G. C. Greubel, Aug 29 2017 *)
  • PARI
    concat([1], for(n=1,25, for(k=0,n, print1((k/n)*binomial(2*n-k-1, n-k)*2^(n-k), ", ")))) \\ G. C. Greubel, Aug 29 2017

Formula

Number triangle: T(0,k) = 0^k, T(n,k) = (k/n)*C(2n-k-1, n-k)*2^(n-k), n, k > 0.
T(n,k) = A106566(n,k)*2^(n-k). - Philippe Deléham, Nov 08 2007
T(n,k) = 2*T(n,k+1) + T(n-1,k-1) with T(n,n) = 1 and T(n,0) = 0 for n >= 1. - Peter Bala, Feb 02 2020