cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110533 a(n) = floor(n/2) * floor(n/5).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 3, 3, 4, 4, 10, 10, 12, 12, 14, 21, 24, 24, 27, 27, 40, 40, 44, 44, 48, 60, 65, 65, 70, 70, 90, 90, 96, 96, 102, 119, 126, 126, 133, 133, 160, 160, 168, 168, 176, 198, 207, 207, 216, 216, 250, 250, 260, 260, 270, 297, 308, 308, 319, 319, 360, 360, 372
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 25 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Floor[n/2]*Floor[n/5], {n, 0, 50}] (* G. C. Greubel, Aug 30 2017 *)
  • PARI
    for(n=0,50, print1(floor(n/2)*floor(n/5), ", ")) \\ G. C. Greubel, Aug 30 2017

Formula

a(n) = A004526(n)*A002266(n).
From R. J. Mathar, Feb 20 2011: (Start)
a(n) = +a(n-2) +a(n-5) -a(n-7) +a(n-10) -a(n-12) -a(n-15) +a(n-17).
G.f.: -x^5*(2+3*x+x^2+x^3+x^4+4*x^5+3*x^6+x^7+x^8+x^9+x^10+x^11) / ( (x^4-x^3+x^2-x+1) *(1+x)^2 *(x^4+x^3+x^2+x+1)^2 *(x-1)^3 ). (End)
Sum_{n>=5} (-1)^(n+1)/a(n) = sqrt(5*(5-2*sqrt(5)))*Pi/8 - (5/8)*(1 + sqrt(5)*log(phi)) + (25/16)*log(5) - 2*log(2), where phi is the golden ratio (A001622). - Amiram Eldar, Mar 30 2023