cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110570 Triangle read by rows: T(n,0) = T(n,n) = 1 and for 0

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 2, 4, 1, 1, 5, 4, 4, 5, 1, 1, 6, 3, 2, 3, 6, 1, 1, 7, 5, 5, 5, 5, 7, 1, 1, 8, 4, 5, 2, 5, 4, 8, 1, 1, 9, 6, 3, 6, 6, 3, 6, 9, 1, 1, 10, 5, 6, 4, 2, 4, 6, 5, 10, 1, 1, 11, 7, 6, 6, 7, 7, 6, 6, 7, 11, 1, 1, 12, 6, 4, 3, 6, 2, 6, 3, 4, 6, 12, 1, 1, 13, 8, 7, 7, 6, 8, 8, 6, 7, 7
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 28 2005

Keywords

Comments

T(n,k) = T(n,n-k);
row sums give A110571;
T(n,2) = A030451(n) for n>1;
T(n,k)=(1-0^A004197(n,k))*T(n-A004197(n,k),A004197(n,k))+1.

Examples

			. . . . . . . . . . 1 . . . . . . . . . . . .
. . . . . . . . . 1 . 1 . . . . . . . . . . .
. . . . . . . . 1 . x . 1 . . . . B = 1 + A .
. . . . . . . 1 . x . x . 1 . . . . . . . . .
. . . . . . 1 . x . x . x . 1 . . F = E + 1 .
. . . . . 1 . x . E . - . - . 1 . . . . . . .
. . . . 1 . x . x . \ . x . / . 1 . . . . . .
. . . 1 . x . x . x . \ . / . x . 1 . . . . .
. . 1 . - . A . x . x . F . x . x . 1 . . . .
. 1 . \ . / . x . x . x . x . x . x . 1 . . .
1 . x . B . x . x . x . x . x . x . x . 1 . .
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[Min[k, n - k] == 0, 1, 1 + T[n - Min[k, n - k], Min[k, n - k]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Aug 31 2017 *)

Formula

T(n, k) = if s=0 then 1 else T(n-s, s)+1, where s=Min{k, n-k}.