cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110589 Primes p such that 2*q+3 = p^2, where q is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 19, 23, 29, 31, 37, 41, 47, 67, 73, 79, 97, 101, 103, 109, 151, 157, 197, 211, 227, 233, 239, 257, 263, 293, 307, 331, 337, 349, 353, 359, 367, 389, 397, 409, 443, 449, 463, 487, 491, 509, 521, 547, 569, 571, 587, 613, 619, 653, 661, 673, 727
Offset: 1

Views

Author

Walter Kehowski, Sep 13 2005

Keywords

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | IsPrime((p^2-3) div 2)]; // Vincenzo Librandi, Mar 19 2015
  • Maple
    ispower := proc(n,b) andmap(proc(w) evalb(w[2] mod b = 0) end, ifactors(n)[2]) end: a:=2: SQRTP||a:=[]; for z from 1 to 1 do for n from 1 to 10000 do p:=ithprime(n); m:=a*p+a+1; if ispower(m,2) and isprime(sqrt(m)) then SQRTP||a:=[op(SQRTP||a),sqrt(m)] fi od; od; SQRTP||a;
  • Mathematica
    fQ[n_] := PrimeQ[(n^2 - 3)/2]; Select[ Prime@ Range@129, fQ@# &] (* Robert G. Wilson v, Jun 19 2006 *)
    Select[Table[Sqrt[2 Prime[n] + 3], {n, 1, 30000}], PrimeQ] (* Vincenzo Librandi, Mar 19 2015 *)

Extensions

More terms from Robert G. Wilson v, Jun 19 2006