cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A118940 Primes p such that (p^2+7)/8 is prime.

Original entry on oeis.org

3, 7, 17, 23, 41, 47, 71, 89, 103, 113, 127, 137, 151, 191, 193, 199, 223, 263, 271, 281, 337, 359, 401, 439, 457, 503, 521, 569, 577, 599, 641, 719, 727, 751, 839, 857, 863, 881, 887, 929, 991, 1009, 1033, 1097, 1103, 1151, 1193, 1217, 1231, 1279, 1297, 1303
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>2, we have q=4k+-1 for some k, which makes it easy to show that 8 divides q^2+7.

Crossrefs

Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118939, A118941 and A118942.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2+7)/8]&]
  • PARI
    lista(nn) = {forprime(p=2, nn, iferr(if (isprime(q=(p^2+7)/8), print1(q, ", ")), E, ););} \\ Michel Marcus, Feb 18 2018

A118939 Primes p such that (p^2+3)/4 is prime.

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 29, 31, 41, 43, 67, 83, 101, 109, 139, 151, 157, 179, 181, 199, 211, 223, 239, 263, 277, 283, 307, 311, 337, 347, 353, 379, 389, 419, 431, 463, 491, 557, 577, 587, 619, 659, 673, 739, 757, 797, 809, 811, 829, 853, 907, 911, 953, 991, 1051
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>2, we have q=4k+-1 for some k, which makes it easy to show that 4 divides q^2+3. Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118940, A118941 and A118942.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2+3)/4]&]

A165635 Primes of the form (p^2 - 3)/2 where p is also prime.

Original entry on oeis.org

3, 11, 23, 59, 83, 179, 263, 419, 479, 683, 839, 1103, 2243, 2663, 3119, 4703, 5099, 5303, 5939, 11399, 12323, 19403, 22259, 25763, 27143, 28559, 33023, 34583, 42923, 47123, 54779, 56783, 60899, 62303, 64439, 67343, 75659, 78803, 83639, 98123
Offset: 1

Views

Author

Vincenzo Librandi, Sep 23 2009

Keywords

Comments

The sequence could be generated by searching for squared primes p^2 in A153238.

Examples

			The prime 3=(3^2-3)/2 is generated by p=3. The prime 11=(5^2-3)/2 is generated by p=5. The prime 23 by p=7.
		

Crossrefs

Programs

  • Magma
    [a: p in PrimesInInterval(1, 500) | IsPrime(a) where a is (p^2 - 3) div 2]; // Vincenzo Librandi, Oct 12 2012
  • Mathematica
    Select[Table[(p^2 - 3)/2, {p, Prime[Range[300]]}], PrimeQ] (* Vincenzo Librandi, Oct 12 2012 *)

Formula

a(n) = (A110589(n)^2-3)/2 .

Extensions

More terms from Max Alekseyev, Sep 25 2009
Comment clarified by R. J. Mathar, Oct 07 2009

A118941 Primes p such that (p^2-5)/4 is prime.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 23, 31, 41, 43, 53, 61, 71, 79, 83, 89, 97, 101, 107, 109, 113, 131, 137, 167, 173, 179, 193, 229, 241, 251, 263, 269, 277, 281, 283, 307, 311, 317, 349, 353, 373, 383, 419, 431, 439, 461, 463, 467, 563, 571, 577, 593, 607, 613, 619, 647
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>2, we have q=4k+-1 for some k, which makes it easy to show that 4 divides q^2-5. Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118939, A118940 and A118942.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2-5)/4]&]

A118942 Primes p such that (p^2-13)/12 is prime.

Original entry on oeis.org

7, 13, 17, 19, 23, 31, 37, 41, 53, 67, 71, 73, 89, 103, 107, 113, 131, 139, 157, 163, 181, 199, 211, 233, 239, 257, 269, 283, 307, 311, 337, 359, 373, 379, 401, 419, 463, 487, 491, 499, 509, 521, 577, 593, 607, 617, 631, 647, 653, 683, 701, 733, 761, 769, 787
Offset: 1

Views

Author

T. D. Noe, May 06 2006

Keywords

Comments

For all primes q>3, we have q=6k+-1 for some k, which makes it easy to show that 12 divides q^2-13. Similar sequences, with p and (p^2+a)/b both prime, are A048161, A062324, A062326, A062718, A109953, A110589, A118915, A118918, A118939, A118940 and A118941.

Programs

  • Mathematica
    Select[Prime[Range[200]],PrimeQ[(#^2-13)/12]&]

A284036 Positive integers n such that (n^2 - 3)/2 and (n^2 + 1)/2 are twin primes.

Original entry on oeis.org

3, 5, 11, 19, 25, 29, 65, 79, 101, 205, 209, 221, 245, 275, 289, 299, 349, 371, 409, 415, 449, 521, 535, 569, 571, 575, 595, 649, 661, 695, 739, 781, 791, 935, 949, 991, 1081, 1091, 1099, 1129, 1181, 1225, 1241, 1285, 1345, 1349, 1459, 1489, 1531, 1541, 1615
Offset: 1

Views

Author

Giuseppe Coppoletta, Mar 27 2017

Keywords

Comments

All terms are obviously odd.

Examples

			25 is a term because (25^2 - 3)/2 = 311 and (25^2 + 1)/2 = 313 are twin primes.
		

Crossrefs

Programs

  • Maple
    filter:= n -> isprime((n^2-3)/2) and isprime((n^2+1)/2):
    select(filter, [seq(i,i=1..2000,2)]); # Robert Israel, Apr 24 2017
  • Mathematica
    Select[Range[1, 1285, 2], Times @@ Boole@ Map[PrimeQ, (#^2 + {-3, 1})/2] == 1 &] (* Michael De Vlieger, Mar 28 2017 *)
  • PARI
    isok(n) = isprime((n^2 - 3)/2) && isprime((n^2 + 1)/2); \\ Michel Marcus, Apr 04 2017
    
  • Python
    from sympy import isprime
    print([n for n in range(3, 1700, 2) if isprime((n**2 - 3)//2) and isprime((n**2 + 1)//2)]) # Indranil Ghosh, Apr 04 2017
  • Sage
    [n for n in range(3,1700,2) if is_prime((n^2 - 3)//2) and is_prime((n^2 + 1)//2)]
    

A165637 Primes p such that (p^2-3)/2 is not a prime number.

Original entry on oeis.org

2, 17, 43, 53, 59, 61, 71, 83, 89, 107, 113, 127, 131, 137, 139, 149, 163, 167, 173, 179, 181, 191, 193, 199, 223, 229, 241, 251, 269, 271, 277, 281, 283, 311, 313, 317, 347, 373, 379, 383, 401, 419, 421, 431, 433, 439, 457, 461, 467, 479, 499, 503, 523, 541, 557, 563
Offset: 1

Views

Author

Vincenzo Librandi, Sep 23 2009

Keywords

Examples

			For p=17=a(2), (17^2-3)/2=143 is not a prime. For p=43=a(3), (43^2-3)/2=923 is not a prime.
		

Programs

  • Magma
    [p: p in PrimesUpTo(600)| not IsPrime((p^2-3) div 2)]; // Vincenzo Librandi, Sep 12 2013
  • Mathematica
    Select[Prime[Range[200]], !PrimeQ[(#^2 - 3) / 2]&] (* Harvey P. Dale, Dec 09 2011 *)

Formula

A000040 \ A110589. - R. J. Mathar, Sep 26 2009

Extensions

Extended by R. J. Mathar, Sep 26 2009
Showing 1-7 of 7 results.