A284034 Primes p such that (p^2 - 3)/2 and (p^2 + 1)/2 are twin primes.
3, 5, 11, 19, 29, 79, 101, 349, 409, 449, 521, 569, 571, 661, 739, 991, 1091, 1129, 1181, 1459, 1489, 1531, 1901, 2269, 2281, 2341, 2351, 2389, 2549, 2659, 2671, 2719, 2729, 2731, 3109, 4049, 4349, 5279, 5431, 5471, 5531, 5591, 5669, 6329, 6359, 6871, 7559, 7741
Offset: 1
Keywords
Examples
The prime p = 79 is in the sequence because (p^2-3)/2 = 3119 and (p^2+1)/2 = 3121 are twin primes. Remark that {79, 3120, 3121} is a Pythagorean triple.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime@ Range[10^3], Function[p, Times @@ Boole@ Map[PrimeQ[(p^2 + #)/2 ] &, {-3, 1}] == 1]] (* Michael De Vlieger, Mar 20 2017 *) Select[Prime[Range[1000]],AllTrue[{(#^2-3)/2,(#^2+1)/2},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 04 2017 *)
-
PARI
isok(p) = isprime(p) && isprime((p^2-3)/2) && isprime((p^2+1)/2); \\ Michel Marcus, Mar 31 2017
-
Sage
[p for p in prime_range(10000) if is_prime((p^2-3)//2) and is_prime((p^2+1)//2)]
Comments