A269784 Primes p such that 2*p + 11 is a square.
7, 19, 79, 107, 139, 307, 359, 607, 919, 1399, 1619, 1979, 2239, 2659, 3607, 3779, 4507, 5507, 6379, 6607, 7559, 8059, 8839, 10799, 11699, 12007, 15307, 17107, 20599, 21419, 22679, 23539, 24859, 25307, 25759, 32507, 35107, 40039, 41179, 46507, 47119
Offset: 1
Examples
a(1) = 7 because 2*7+11 = 25. a(2) = 19 because 2*19+11 = 49.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. primes p such that 2*p + k is a square: A165635 (k=3), A176549 (k=7), A201713 (k=10), this sequence (k=11), A201714 (k=14), A176470 (k=15), A155702 (k=18), A221902 (k=19) A269785 (k=23), A269786 (k=31), A176557 (k=35), A154577 (k=39), A269787 (k=43), A269788 (k=47), A269789 (k=59), A154592 (k=67), A269790 (k=79), A155770 (k=83), A154601 (k=103).
Subsequence of A002145.
Programs
-
Magma
[p: p in PrimesUpTo(50000) | IsSquare(2*p+11)];
-
Mathematica
Select[Prime[Range[5000]], IntegerQ[Sqrt[2 # + 11]] &]
-
PARI
lista(nn) = forprime(p=2, nn, if(issquare(2*p+11), print1(p, ", "))); \\ Altug Alkan, Mar 05 2016
-
PARI
list(lim)=my(v=List(),p); forstep(n=5,sqrtint(lim\1*2+11),2, if(isprime(p=(n^2-11)/2), listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Mar 28 2022
-
Python
from sympy import isprime A269784_list, j = [], -5 for i in range(10**5): A269784_list.extend([j] if isprime(j) else []) j += 4*(i+1) # Chai Wah Wu, Mar 09 2016
-
Python
from gmpy2 import is_prime,is_square for p in range(3,10**6,2): if(not is_square(2*p+11)):continue elif(is_prime(p)):print(p) # Soumil Mandal, Apr 07 2016
Formula
a(n) >> n^2 log n. - Charles R Greathouse IV, Aug 23 2022
Comments