cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110611 Minimal value of sum(p(i)p(i+1),i=1..n), where p(n+1)=p(1), as p ranges over all permutations of {1,2,...,n}.

Original entry on oeis.org

1, 4, 11, 21, 37, 58, 87, 123, 169, 224, 291, 369, 461, 566, 687, 823, 977, 1148, 1339, 1549, 1781, 2034, 2311, 2611, 2937, 3288, 3667, 4073, 4509, 4974, 5471, 5999, 6561, 7156, 7787, 8453, 9157, 9898, 10679, 11499, 12361, 13264, 14211, 15201, 16237
Offset: 1

Views

Author

Emeric Deutsch, Jul 30 2005

Keywords

Examples

			a(4)=21 because the values of the sum for the permutations of {1,2,3,4} are 21 (8 times), 24 (8 times) and 25 (8 times).
		

Crossrefs

Programs

  • Magma
    I:=[1, 4, 11, 21, 37]; [n le 5 select I[n] else 3*Self(n-1)-2*Self(n-2)-2*Self(n-3)+3*Self(n-4)-Self(n-5): n in [1..50]]; // Vincenzo Librandi, May 11 2012
  • Maple
    a:=proc(n) if n mod 2 = 0 then (n^3+3*n^2+5*n-6)/6 else (n^3+3*n^2+5*n-3)/6 fi end: seq(a(n),n=1..52);
  • Mathematica
    CoefficientList[Series[(1+x+x^2-2*x^3+x^4)/((1-x)^4*(1+x)),{x,0,50}],x] (* Vincenzo Librandi, May 11 2012 *)

Formula

a(n) = (n^3+3*n^2+5*n-6)/6 if n is even; a(n)=(n^3+3*n^2+5*n-3)/6 if n is odd.
G.f.: x*(1+x+x^2-2*x^3+x^4)/((1-x)^4*(1+x)). [Colin Barker, May 10 2012]
a(n) = (2*n^3+6*n^2+10*n-9-3*(-1)^n)/12. - Luce ETIENNE, Jul 26 2014