A110629 Every 4th term of A083954 such that the self-convolution 4th power is congruent modulo 8 to A083954, which consists entirely of numbers 1 through 4.
1, 3, 1, 3, 3, 2, 4, 3, 2, 3, 3, 4, 2, 2, 2, 1, 1, 4, 1, 3, 4, 3, 2, 2, 1, 1, 3, 4, 1, 1, 2, 3, 2, 2, 3, 4, 4, 1, 4, 4, 1, 4, 2, 3, 1, 2, 1, 4, 3, 3, 1, 4, 3, 3, 2, 3, 4, 2, 3, 4, 1, 2, 1, 3, 4, 3, 4, 1, 4, 2, 2, 3, 1, 4, 3, 2, 1, 4, 3, 4, 4, 2, 1, 4, 1, 4, 4, 2, 4, 4, 1, 3, 3, 4, 1, 1, 1, 4, 3, 2, 1, 3, 1, 2, 2
Offset: 0
Keywords
Examples
A(x) = 1 + 3*x + x^2 + 3*x^3 + 3*x^4 + 2*x^5 + 4*x^6 + ... A(x)^4 = 1 + 12*x + 58*x^2 + 156*x^3 + 315*x^4 + 620*x^5 +... A(x)^4 (mod 8) = 1 + 4*x + 2*x^2 + 4*x^3 + 3*x^4 + 4*x^5 +... G083954(x) = 1 + 4*x + 2*x^2 + 4*x^3 + 3*x^4 + 4*x^5 +... where G083954(x) is the g.f. of A083954.
Programs
-
PARI
{a(n)=local(d=4,m=4,A=1+m*x); for(j=2,d*n, for(k=1,m,t=polcoeff((A+k*x^j+x*O(x^j))^(1/m),j); if(denominator(t)==1,A=A+k*x^j;break)));polcoeff(A,d*n)}
Formula
a(n) = A083954(4*n) for n>=0.