A110688 Expansion of -(2*x+1)*(6*x^2+4*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)).
-1, 1, -4, 19, -73, 262, -931, 3319, -11884, 42679, -153505, 552430, -1988311, 7156123, -25754188, 92683315, -333539317, 1200299014, -4319477491, 15544370887, -55939087228, 201306503071, -724436520553, 2607011250526, -9381785144287
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-7,-17,-20,-12,-6).
Programs
-
Maple
seriestolist(series(-(2*x+1)*(6*x^2+4*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: tessum(infty)-4jbaseforsumseq[ + 'i - .25'j + .25'k - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e], Sumtype is set to: default; Fortype is set to: 1A.
-
Mathematica
CoefficientList[Series[-(2*x + 1)*(6*x^2 + 4*x + 1)/((3*x^2 + 3*x + 1)*(2*x^3 + 2*x^2 + 4*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 06 2017 *)
-
PARI
Vec(-(2*x+1)*(6*x^2+4*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012