cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A110688 Expansion of -(2*x+1)*(6*x^2+4*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)).

Original entry on oeis.org

-1, 1, -4, 19, -73, 262, -931, 3319, -11884, 42679, -153505, 552430, -1988311, 7156123, -25754188, 92683315, -333539317, 1200299014, -4319477491, 15544370887, -55939087228, 201306503071, -724436520553, 2607011250526, -9381785144287
Offset: 0

Views

Author

Creighton Dement, Aug 02 2005

Keywords

Crossrefs

Programs

  • Maple
    seriestolist(series(-(2*x+1)*(6*x^2+4*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: tessum(infty)-4jbaseforsumseq[ + 'i - .25'j + .25'k - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e], Sumtype is set to: default; Fortype is set to: 1A.
  • Mathematica
    CoefficientList[Series[-(2*x + 1)*(6*x^2 + 4*x + 1)/((3*x^2 + 3*x + 1)*(2*x^3 + 2*x^2 + 4*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 06 2017 *)
  • PARI
    Vec(-(2*x+1)*(6*x^2+4*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

A110689 Expansion of (2*x+1)*(4*x^2+8*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)).

Original entry on oeis.org

1, 3, -18, 63, -207, 696, -2415, 8565, -30714, 110583, -398439, 1435152, -5167083, 18598065, -66931314, 240862563, -866772819, 3119198160, -11224913079, 40394716341, -145367356794, 523129840335, -1882574375679, 6774773362320, -24380205972915
Offset: 0

Views

Author

Creighton Dement, Aug 02 2005

Keywords

Crossrefs

Programs

  • Maple
    seriestolist(series((2*x+1)*(4*x^2+8*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1)), x=0,25)); -or- Floretion Algebra Multiplication Program, FAMP Code: tessum(infty)-4basekforsumseq[ + 'i - .25'j + .25'k - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e], Sumtype is set to: default; Fortype is set to: 1A.
  • Mathematica
    CoefficientList[Series[(2*x + 1)*(4*x^2 + 8*x + 1)/((3*x^2 + 3*x + 1)*(2*x^3 + 2*x^2 + 4*x + 1)), {x, 0, 50}], x] (* G. C. Greubel, Sep 06 2017 *)
  • PARI
    Vec((2*x+1)*(4*x^2+8*x+1)/((3*x^2+3*x+1)*(2*x^3+2*x^2+4*x+1))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
Showing 1-2 of 2 results.