A110699 Binary length of the smallest prime with Hamming weight n (given by A061712).
2, 2, 3, 5, 5, 9, 7, 9, 10, 11, 12, 13, 13, 17, 16, 17, 17, 19, 19, 21, 22, 24, 24, 25, 26, 28, 28, 29, 30, 33, 31, 33, 34, 35, 36, 38, 38, 40, 40, 41, 42, 44, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 56, 57, 59, 59, 60, 61, 61, 65, 64, 65, 66, 67, 68, 69, 70, 72, 72, 73
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n=1..1024
Programs
-
Maple
with(combstruct); a:=proc(n) local m,is,s,t,r; if n=1 then return 2 fi; r:=+infinity; for m from 0 do is := iterstructs(Combination(n-2+m),size=n-2); while not finished(is) do s := nextstruct(is); t := 2^(n-1+m)+1+add(2^i,i=s); if isprime(t) then return n+m fi; od; od; return 0; end;
-
Mathematica
A061712[n_] := A061712[n] = Module[{m, s, k, p}, For[m=0, True, m++, s = {1, Sequence @@ #, 1} & /@ Permutations[Join[Table[1, {n-2}], Table[0, {m}]]] // Sort; For[k=1, k <= Length[s], k++, p = FromDigits[s[[k]], 2]; If[PrimeQ[p], Return[p] ]]]]; A061712[1]=2; Table[IntegerDigits[A061712[n], 2] // Length, {n, 1, 100}] (* Jean-François Alcover, Mar 16 2015 *)
-
PARI
a(n) = {forprime(p=2,, if (hammingweight(p) == n, return(#binary(p))););} \\ Michel Marcus, Mar 16 2015
Formula
a(n) = n + A110700(n).
Comments