A110700 Number of zeros in the smallest prime with Hamming weight n (given by A061712).
1, 0, 0, 1, 0, 3, 0, 1, 1, 1, 1, 1, 0, 3, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
Offset: 1
Links
- T. D. Noe, Table of n, a(n) for n=1..1024
Programs
-
Maple
with(combstruct); a:=proc(n) local m,is,s,t,r; if n=1 then return 1 fi; r:=+infinity; for m from 0 do is := iterstructs(Combination(n-2+m),size=n-2); while not finished(is) do s := nextstruct(is); t := 2^(n-1+m)+1+add(2^i,i=s); if isprime(t) then return m fi; od; od; return 0; end;
-
Mathematica
A061712[n_] := A061712[n] = Module[{m, s, k, p}, For[m=0, True, m++, s = {1, Sequence @@ #, 1} & /@ Permutations[Join[Table[1, {n - 2}], Table[0, {m}]]] // Sort; For[k=1, k <= Length[s], k++, p = FromDigits[s[[k]], 2]; If[PrimeQ[p], Return[p]]]]]; A061712[1]=2; Table[DigitCount[A061712[n], 2, 0], {n, 1, 100}] (* Jean-François Alcover, Mar 16 2015 *)
Formula
a(n) = A110699(n) - n.
Comments