cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A134080 Expansion of (f(-q^5)^5 / f(-q) + f(q^5)^5 / f(q)) / 2 in powers of q^2 where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 5, 6, 7, 12, 12, 10, 16, 20, 12, 22, 25, 20, 30, 32, 24, 30, 36, 24, 42, 42, 35, 46, 43, 32, 52, 60, 40, 60, 62, 42, 60, 66, 44, 72, 72, 50, 72, 80, 61, 82, 80, 60, 90, 72, 64, 100, 96, 84, 102, 102, 60, 106, 110, 72, 112, 110, 84, 96, 133, 84, 125, 126
Offset: 0

Views

Author

Michael Somos, Oct 07 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 5*x^2 + 6*x^3 + 7*x^4 + 12*x^5 + 12*x^6 + 10*x^7 + 16*x^8 + ...
G.f. = q + 2*q^3 + 5*q^5 + 6*q^7 + 7*q^9 + 12*q^11 + 12*q^13 + 10*q^15 + 16*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := With[ {m = 2 n + 1}, If[ m < 1, 0, Sum[ m/d KroneckerSymbol[ 5, d], {d, Divisors @ m}]]]; (* Michael Somos, Jun 14 2014 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1 ; sumdiv(n, d, kronecker( 5, d) * n / d)) };

Formula

Expansion of ( phi(x^5) * psi(x^2) + x * phi(x) * psi(x^10) ) * f(-x^5) * phi(-x^5) / chi(-x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(5^e) = 5^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 9 (mod 10), b(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 3, 7 (mod 10).
a(n) = A053723(2*n) = A110712(2*n + 1) = A129303(2*n + 1) = A138483(2*n + 1) = A138512(2*n + 1) = A138557(2*n + 1).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (5/2) * A328717 = 2*Pi^2/(5*sqrt(5)) = 1.7655285081... . - Amiram Eldar, Nov 23 2023

A138483 Expansion of (phi(q)^3 * phi(q^5) - phi(q) * phi(q^5)^3) / 4 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 3, 2, 1, 5, 6, 6, 7, 7, 15, 12, 2, 12, 18, 10, 9, 16, 21, 20, 5, 12, 36, 22, 14, 25, 36, 20, 6, 30, 30, 32, 23, 24, 48, 30, 7, 36, 60, 24, 35, 42, 36, 42, 12, 35, 66, 46, 18, 43, 75, 32, 12, 52, 60, 60, 42, 40, 90, 60, 10, 62, 96, 42, 41, 60, 72, 66, 16, 44
Offset: 1

Views

Author

Michael Somos, Mar 20 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q + 3*q^2 + 2*q^3 + q^4 + 5*q^5 + 6*q^6 + 6*q^7 + 7*q^8 + 7*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, n/# KroneckerSymbol[ 25, #] (-1)^Quotient[# + 2, 5] If[ Mod[#, 4] > 0, 1, 5] &]]; (* Michael Somos, Sep 27 2015 *)
    a[ n_] := SeriesCoefficient[ q EllipticTheta[3, 0, q] QPochhammer[ -q, q^2] QPochhammer[ -q^5] QPochhammer[ q^10]^2, {q, 0, n}]; (* Michael Somos, Sep 27 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[3, 0, q]^3 EllipticTheta[3, 0, q^5] - EllipticTheta[3, 0, q] EllipticTheta[3, 0, q^5]^3) / 4, {q, 0, n}]; (* Michael Somos, Sep 27 2015 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, n/d * kronecker(25, d) * (-1)^((d+2) \ 5) * if(d%4, 1, 5)))};
    
  • PARI
    {a(n) = my(A, p, e, f); if( n<1, 0, A = factor(n); prod( k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, (2^(e+1) - 5*(-1)^e) / 3, f = kronecker(5, p); (p^(e+1) - f^(e+1)) / (p - f) )))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A)^7 * eta(x^10 + A)^5 / (eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^5 + A) * eta(x^20 + A)), n))};

Formula

Expansion of q * phi(q) * chi(q) * f(q^5) * f(-q^10)^2 in powers of q where phi(), chi(), f() are Ramanujan theta functions.
Expansion of eta(q^2)^7 * eta(q^10)^5 / (eta(q)^3 * eta(q^4)^3 * eta(q^5) * eta(q^20)) in powers of q.
Euler transform of period 20 sequence [3, -4, 3, -1, 4, -4, 3, -1, 3, -8, 3, -1, 3, -4, 4, -1, 3, -4, 3, -4, ...].
a(n) is multiplicative with a(2^e) = (2^(e+1) - 5*(-1)^e) / 3 if e>0, a(5^e) = 5^e, a(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 4 (mod 5), a(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 2, 3 (mod 5).
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = 80^(1/2) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A113185.
G.f.: x * Product_{k>0} (1 - x^(2*k)) * (1 + x^(2*k-1))^3 * (1 - x^(5*k))^3 * (1 + x^(10*k-5))^4 * (1 + x^(10*k))^3.
a(n) = -(-1)^n * A110712(n).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Pi^2/(5*sqrt(5)) = 0.882764... . - Amiram Eldar, Nov 24 2023
Showing 1-2 of 2 results.