cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A110712 Expansion of eta(q)^3 * eta(q^5) * eta(q^10)^2 / eta(q^2)^2 in powers of q.

Original entry on oeis.org

1, -3, 2, -1, 5, -6, 6, -7, 7, -15, 12, -2, 12, -18, 10, -9, 16, -21, 20, -5, 12, -36, 22, -14, 25, -36, 20, -6, 30, -30, 32, -23, 24, -48, 30, -7, 36, -60, 24, -35, 42, -36, 42, -12, 35, -66, 46, -18, 43, -75, 32, -12, 52, -60, 60, -42, 40, -90, 60, -10, 62, -96, 42, -41, 60, -72, 66, -16, 44, -90, 72, -49, 72, -108
Offset: 1

Views

Author

Michael Somos, Aug 05 2005

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = q - 3*q^2 + 2*q^3 - q^4 + 5*q^5 - 6*q^6 + 6*q^7 - 7*q^8 + 7*q^9 - 15*q^10 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, -(-1)^# # KroneckerSymbol[ 5, n/#] &]]; (* Michael Somos, Jul 12 2012 *)
    a[ n_] := SeriesCoefficient[ (1/4) (EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^5]^3 - EllipticTheta[ 4, 0, q]^3 EllipticTheta[ 4, 0, q^5]), {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, -(-1)^d * d * kronecker( n/d, 5)))};
    
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^5 + A) * eta(x^10 + A)^2 / eta(x^2 + A)^2, n))};

Formula

Expansion of (phi(-q) * phi(-q^5)^3 - phi(-q)^3 * phi(-q^5)) / 4 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Jul 12 2012
Euler transform of period 10 sequence [-3, -1, -3, -1, -4, -1, -3, -1, -3, -4, ...].
Multiplicative with a(p^e) = p^e if p=5, a(p^e) = -(p^(e+1) - 5*(-1)^e) / (p + 1) if p=2, a(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1 or 9 (mod 10), a(p^e) = (p^(e+1) - (-1)^e) / (p + 1) if p == 3 or 7 (mod 10).
G.f.: Sum_{k>0} Kronecker(k, 5) * x^k / (1 + x^k)^2 = x * Product_{k>0} (1 - x^k)^3 * (1 - x^(5*k)) * (1 - x^(10*k))^2 / (1 - x^(2*k))^2.
a(n) = (-1)^(n+1) * A138483(n). - Amiram Eldar, Jan 28 2024

A134080 Expansion of (f(-q^5)^5 / f(-q) + f(q^5)^5 / f(q)) / 2 in powers of q^2 where f() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 5, 6, 7, 12, 12, 10, 16, 20, 12, 22, 25, 20, 30, 32, 24, 30, 36, 24, 42, 42, 35, 46, 43, 32, 52, 60, 40, 60, 62, 42, 60, 66, 44, 72, 72, 50, 72, 80, 61, 82, 80, 60, 90, 72, 64, 100, 96, 84, 102, 102, 60, 106, 110, 72, 112, 110, 84, 96, 133, 84, 125, 126
Offset: 0

Views

Author

Michael Somos, Oct 07 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 5*x^2 + 6*x^3 + 7*x^4 + 12*x^5 + 12*x^6 + 10*x^7 + 16*x^8 + ...
G.f. = q + 2*q^3 + 5*q^5 + 6*q^7 + 7*q^9 + 12*q^11 + 12*q^13 + 10*q^15 + 16*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := With[ {m = 2 n + 1}, If[ m < 1, 0, Sum[ m/d KroneckerSymbol[ 5, d], {d, Divisors @ m}]]]; (* Michael Somos, Jun 14 2014 *)
  • PARI
    {a(n) = if( n<0, 0, n = 2*n + 1 ; sumdiv(n, d, kronecker( 5, d) * n / d)) };

Formula

Expansion of ( phi(x^5) * psi(x^2) + x * phi(x) * psi(x^10) ) * f(-x^5) * phi(-x^5) / chi(-x) in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.
a(n) = b(2*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(5^e) = 5^e, b(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 9 (mod 10), b(p^e) = (p^(e+1) + (-1)^e) / (p + 1) if p == 3, 7 (mod 10).
a(n) = A053723(2*n) = A110712(2*n + 1) = A129303(2*n + 1) = A138483(2*n + 1) = A138512(2*n + 1) = A138557(2*n + 1).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (5/2) * A328717 = 2*Pi^2/(5*sqrt(5)) = 1.7655285081... . - Amiram Eldar, Nov 23 2023
Showing 1-2 of 2 results.