A110754 a(n) = tau(N), where N = the number obtained as a concatenation of 8712 with itself n times and tau(n) = number of divisors of n.
36, 144, 768, 576, 1152, 6144, 2304, 18432, 15360, 18432, 12288, 49152, 4608, 36864, 6291456, 294912, 9216, 983040, 576, 294912, 18874368, 196608, 9216, 25165824, 1179648, 73728, 2359296, 1179648, 73728, 402653184, 2304, 2359296, 33554432, 147456, 75497472, 31457280, 147456, 36864
Offset: 1
Examples
a(2) = tau(87128712) = 144.
Programs
-
Maple
A110754 := proc(n) local pow8712,i ; pow8712 := 8712*add(10^(4*i),i=0..n-1) ; numtheory[tau](pow8712) ; end: seq(A110754(n),n=1..22) ; # R. J. Mathar, Aug 17 2007
-
Mathematica
Table[DivisorSigma[0,FromDigits[PadRight[{},4n,{8,7,1,2}]]],{n,25}] (* Harvey P. Dale, Dec 29 2016 *)
-
PARI
a(n)={numdiv(8712*(10^(4*n)-1)/9999)} \\ Andrew Howroyd, Nov 09 2019
Formula
a(n) = A000005(8712*Sum_{i=0..n-1} 10^(4i)). - R. J. Mathar, Aug 17 2007
Extensions
More terms from R. J. Mathar, Aug 17 2007
a(23)-a(38) from Andrew Howroyd, Nov 09 2019
Comments