cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110765 Let n in binary be a k-bit number with bits d_1, d_2, ..., d_k (concatenated). a(n) = 2^d_1 * 3^d_2 * ... * prime(k)^d_k, where prime(k) is the k-th prime.

Original entry on oeis.org

1, 2, 2, 6, 2, 10, 6, 30, 2, 14, 10, 70, 6, 42, 30, 210, 2, 22, 14, 154, 10, 110, 70, 770, 6, 66, 42, 462, 30, 330, 210, 2310, 2, 26, 22, 286, 14, 182, 154, 2002, 10, 130, 110, 1430, 70, 910, 770, 10010, 6, 78, 66, 858, 42, 546, 462, 6006, 30, 390, 330, 4290, 210, 2730
Offset: 0

Views

Author

Amarnath Murthy, Aug 12 2005

Keywords

Comments

All terms after a(0) have 2-adic valuation equal to 1, i.e., they equal twice an odd (and squarefree) number, since the first digit in base two will always be "1". - M. F. Hasler, Mar 25 2011
2 appears at index n = 2^k for k >= 0, since such n_2 begins with "1" followed by k zeros, and 2^1 * 3^0 * ... * p_(k+1)^0 = 2. - Michael De Vlieger, Feb 28 2021

Examples

			n = 7: binary(7) = 111, and the first three primes are 2, 3, 5, so a(7) = 2^1 * 3^1 * 5^1 = 2*3*5 = 30.
n = 10: binary(10) = 1010, so a(10) = 2^1 * 3^0 * 5^1 * 7^0 = 2*1*5*1 = 10.
		

Crossrefs

Cf. A110766.
Range of terms: {1} U A039956.

Programs

  • Haskell
    a110765 = product . zipWith (^) a000040_list .  reverse . a030308_row
    -- Reinhard Zumkeller, Aug 28 2014
    
  • Mathematica
    Array[Times @@ Prime@ Flatten@ Position[#, 1] &@ IntegerDigits[#, 2] &, 61] (* Michael De Vlieger, Feb 28 2021 *)
  • PARI
    a(n)=factorback(Mat(vector(#n=binary(n),j,[prime(j),n[j]])~))
    
  • PARI
    a(n)=prod(j=1,#n=binary(n),prime(j)^n[j])  \\ M. F. Hasler, Mar 25 2011
    
  • Python
    from sympy import prime
    from operator import mul
    from functools import reduce
    def A110765(n):
        return reduce(mul, (prime(i) for i,d in enumerate(bin(n)[2:],start=1) if int(d)))
    # Chai Wah Wu, Sep 05 2014
    
  • Python
    # implementation using recursion
    from sympy import prime
    def _A110765(n):
        nlen = len(n)
        return _A110765(n[:-1])*(prime(nlen) if int(n[-1]) else 1) if nlen > 1 else int(n) + 1
    def A110765(n):
        return _A110765(bin(n)[2:])
    # Chai Wah Wu, Sep 05 2014

Formula

a(0) = 1; a(2n) = a(n); a(2n+1) = a(n) * A000040(1+A000523(2n+1)), where A000040(k) is the k-th prime and A000523(k) = floor(log_2(k)) . - Peter Munn, Aug 26 2025

Extensions

More terms from Stacy Hawthorne (shawtho1(AT)ashland.edu), Oct 31 2005
Name edited by Peter Munn, May 28 2025
a(0) prefixed by Peter Munn, Aug 26 2025