Original entry on oeis.org
2, 6, 10, 30, 70, 210, 770, 2310, 10010, 30030, 34034, 170170, 510510, 646646, 3233230, 9699690, 14872858, 74364290, 223092870, 431312882, 2156564410, 6469693230, 13370699342, 66853496710, 200560490130, 494715875654, 2473579378270, 7420738134810, 20283350901814
Offset: 1
-
Block[{s = Array[Times @@ Prime@ Flatten@ Position[#, 1] &@ IntegerDigits[#, 2] &, 2^12]}, Union@ FoldList[Max, s]]
A019565
The squarefree numbers ordered lexicographically by their prime factorization (with factors written in decreasing order). a(n) = Product_{k in I} prime(k+1), where I is the set of indices of nonzero binary digits in n = Sum_{k in I} 2^k.
Original entry on oeis.org
1, 2, 3, 6, 5, 10, 15, 30, 7, 14, 21, 42, 35, 70, 105, 210, 11, 22, 33, 66, 55, 110, 165, 330, 77, 154, 231, 462, 385, 770, 1155, 2310, 13, 26, 39, 78, 65, 130, 195, 390, 91, 182, 273, 546, 455, 910, 1365, 2730, 143, 286, 429, 858, 715, 1430, 2145, 4290
Offset: 0
5 = 2^2+2^0, e_1 = 2, e_2 = 0, prime(2+1) = prime(3) = 5, prime(0+1) = prime(1) = 2, so a(5) = 5*2 = 10.
From _Philippe Deléham_, Jun 03 2015: (Start)
This sequence regarded as a triangle withs rows of lengths 1, 1, 2, 4, 8, 16, ...:
1;
2;
3, 6;
5, 10, 15, 30;
7, 14, 21, 42, 35, 70, 105, 210;
11, 22, 33, 66, 55, 110, 165, 330, 77, 154, 231, 462, 385, 770, 1155, 2310;
...
(End)
From _Peter Munn_, Jun 14 2020: (Start)
The initial terms are shown below, equated with the product of their prime factors to exhibit the lexicographic order. We start with 1, since 1 is factored as the empty product and the empty list is first in lexicographic order.
n a(n)
0 1 = .
1 2 = 2.
2 3 = 3.
3 6 = 3*2.
4 5 = 5.
5 10 = 5*2.
6 15 = 5*3.
7 30 = 5*3*2.
8 7 = 7.
9 14 = 7*2.
10 21 = 7*3.
11 42 = 7*3*2.
12 35 = 7*5.
(End)
Cf.
A007088,
A030308,
A000040,
A013929,
A005117,
A103785,
A103786,
A110765,
A064273,
A246353,
A283475,
A283477,
A285319,
A285331,
A285332,
A288569,
A293442.
Cf.
A285315 (numbers for which a(n) < n),
A285316 (for which a(n) > n).
Even bisection (which contains the odd terms):
A332382.
Least prime index of a(n) is
A001511.
-
a019565 n = product $ zipWith (^) a000040_list (a030308_row n)
-- Reinhard Zumkeller, Apr 27 2013
-
a:= proc(n) local i, m, r; m:=n; r:=1;
for i while m>0 do if irem(m,2,'m')=1
then r:=r*ithprime(i) fi od; r
end:
seq(a(n), n=0..60); # Alois P. Heinz, Sep 06 2014
-
Do[m=1;o=1;k1=k;While[ k1>0, k2=Mod[k1, 2];If[k2\[Equal]1, m=m*Prime[o]];k1=(k1-k2)/ 2;o=o+1];Print[m], {k, 0, 55}] (* Lei Zhou, Feb 15 2005 *)
Table[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[n, 2], {n, 0, 55}] (* Michael De Vlieger, Aug 27 2016 *)
b[0] := {1}; b[n_] := Flatten[{ b[n - 1], b[n - 1] * Prime[n] }];
a = b[6] (* Fred Daniel Kline, Jun 26 2017 *)
-
a(n)=factorback(vecextract(primes(logint(n+!n,2)+1),n)) \\ M. F. Hasler, Mar 26 2011, updated Aug 22 2014, updated Mar 01 2018
-
from operator import mul
from functools import reduce
from sympy import prime
def A019565(n):
return reduce(mul,(prime(i+1) for i,v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1
# Chai Wah Wu, Dec 25 2014
-
(define (A019565 n) (let loop ((n n) (i 1) (p 1)) (cond ((zero? n) p) ((odd? n) (loop (/ (- n 1) 2) (+ 1 i) (* p (A000040 i)))) (else (loop (/ n 2) (+ 1 i) p))))) ;; (Requires only the implementation of A000040 for prime numbers.) - Antti Karttunen, Apr 20 2017
Definition corrected by Klaus-R. Löffler, Aug 20 2014
A246532
Smallest Meertens number in base n, or -1 if none exists.
Original entry on oeis.org
2, 10, 200, 6, 54, 100, 216, 4199040, 81312000
Offset: 2
100 is a base 7 Meertens number because 100 = 202_7 = 2^2 * 3^0 * 5^2.
4199040 is a base 9 Meertens number because 4199040 = 7810000_9 = 2^7 * 3^8 * 5^1.
- David Applegate, C++ program used to search for Meertens numbers
- Richard S. Bird, Functional Pearl: Meertens number, Journal of Functional Programming, Vol. 8, No. 1 (Jan 1998), pp. 83-88.
- Wikipedia, Meertens number.
- Chai Wah Wu, Meertens Number and Its Variations, IBM Research Report RC25531 (WAT1504-032), April 2015.
- Chai Wah Wu, Meertens Number and Its Variations, arXiv:1603.08493 [math.NT], 2016.
Cf.
A189398 (base 10 Godel encoding),
A110765 (base 2 Godel encoding).
Conjectural terms removed from the sequence by
Max Alekseyev, Jul 22 2024
Showing 1-3 of 3 results.
Comments