A110843 a(n) = least non-palindromic k such that k and r(k) have the same n prime divisors, where r(k) is the digit reversal of k.
1089, 2178, 21978, 24024, 2426424, 240264024, 23162643504, 2305213214304
Offset: 2
Examples
a(3) = 2178 because 2178 and 8712 both have the same 3 prime divisors and 2178 is the least non-palindromic integer with this property.
Crossrefs
Cf. A056964.
Programs
-
Mathematica
r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; Do[k = 1; While[r[k] == k || Length[Select[Divisors[k], PrimeQ]] != n || Select[Divisors[k], PrimeQ] != Select[Divisors[r[k]], PrimeQ], k++ ]; Print[k], {n, 2, 10}]
Extensions
a(7) from Hans Havermann, Sep 26 2005
a(8) from Donovan Johnson, Apr 09 2010
a(9) from Michael S. Branicky, Feb 15 2023
Comments