cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110886 Number of signed weighted Euler trees with total weight n (associated to even switching classes of matrices of order 2n).

Original entry on oeis.org

1, 1, 3, 8, 27, 104, 436, 1930, 8871, 41916, 202300, 992942, 4940912, 24867870, 126371426, 647494746, 3341341155, 17350565376, 90593056624, 475333630402, 2504959102224, 13252904123786, 70366654738470, 374824160997086
Offset: 0

Views

Author

David Garber, Sep 19 2005

Keywords

Examples

			a(5) = 104. (1, 3, 8, 27) dot (1, 2, 5, 19) = 77; then 104 = a(4) + 77 = 27 + 77.
		

Programs

  • Maple
    G:=(3*(1-z)-sqrt((1-z)*(1-5*z-4*z^2)))/2/(1-z): Gser:=series(G,z=0,32): seq(coeff(Gser,z,n),n=0..27); # Emeric Deutsch, Dec 31 2006
  • Mathematica
    CoefficientList[Series[(3*(1-x)-Sqrt[(1-x)*(1-5*x-4*x^2)])/2/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
    a[n_] := Sum[(Binomial[2*k-2, k-1]*Sum[Binomial[k, n-k-i]*Binomial[k+i-1, k-1], {i, 0, n-k}])/k, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jan 24 2013, after Vladimir Kruchinin *)
  • Maxima
    a(n):=sum((binomial(2*k-2,k-1)*sum(binomial(k,n-k-i)*binomial(k+i-1,k-1),i,0,n-k))/k,k,1,n); /* Vladimir Kruchinin, Jan 24 2013 */
    
  • PARI
    N = 66;  x = 'x + O('x^N);
    gf =  ( 3*(1-x)-sqrt((1-x)*(1-5*x-4*x^2))  ) / (2*(1-x));
    v = Vec(gf)
    /* Joerg Arndt, Jan 24 2013 */

Formula

G.f.: ( 3*(1-z)-sqrt((1-z)*(1-5*z-4*z^2)) ) / (2*(1-z)).
a(n) = 2 + Sum_{k=1..n-1} a(n-k)*a(k). - Benoit Cloitre, Jul 27 2008
Recurrence: n*a(n) = 2*(3*n-4)*a(n-1) - (n+2)*a(n-2) - 2*(2*n-7)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ sqrt(41-3*sqrt(41))*((5+sqrt(41))/2)^n/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 18 2012
a(n) = Sum_{k=1..n} (binomial(2*k-2, k-1)*Sum_{i=0..n-k} binomial(k, n-k-i)*binomial(k+i-1, k-1)/k), n > 0, a(0)=1. - Vladimir Kruchinin, Jan 24 2013
a(n+1) starting (1, 3, ...) = (first n terms) dot product (first n difference terms), added to a(n). - Gary W. Adamson, May 20 2013

Extensions

More terms from Emeric Deutsch, Dec 31 2006