A110886 Number of signed weighted Euler trees with total weight n (associated to even switching classes of matrices of order 2n).
1, 1, 3, 8, 27, 104, 436, 1930, 8871, 41916, 202300, 992942, 4940912, 24867870, 126371426, 647494746, 3341341155, 17350565376, 90593056624, 475333630402, 2504959102224, 13252904123786, 70366654738470, 374824160997086
Offset: 0
Keywords
Examples
a(5) = 104. (1, 3, 8, 27) dot (1, 2, 5, 19) = 77; then 104 = a(4) + 77 = 27 + 77.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- R. Bacher and D. Garber, Spindle-configurations of skew lines, Geom. Topol 11 (2007) 1049.
Programs
-
Maple
G:=(3*(1-z)-sqrt((1-z)*(1-5*z-4*z^2)))/2/(1-z): Gser:=series(G,z=0,32): seq(coeff(Gser,z,n),n=0..27); # Emeric Deutsch, Dec 31 2006
-
Mathematica
CoefficientList[Series[(3*(1-x)-Sqrt[(1-x)*(1-5*x-4*x^2)])/2/(1-x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *) a[n_] := Sum[(Binomial[2*k-2, k-1]*Sum[Binomial[k, n-k-i]*Binomial[k+i-1, k-1], {i, 0, n-k}])/k, {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jan 24 2013, after Vladimir Kruchinin *)
-
Maxima
a(n):=sum((binomial(2*k-2,k-1)*sum(binomial(k,n-k-i)*binomial(k+i-1,k-1),i,0,n-k))/k,k,1,n); /* Vladimir Kruchinin, Jan 24 2013 */
-
PARI
N = 66; x = 'x + O('x^N); gf = ( 3*(1-x)-sqrt((1-x)*(1-5*x-4*x^2)) ) / (2*(1-x)); v = Vec(gf) /* Joerg Arndt, Jan 24 2013 */
Formula
G.f.: ( 3*(1-z)-sqrt((1-z)*(1-5*z-4*z^2)) ) / (2*(1-z)).
a(n) = 2 + Sum_{k=1..n-1} a(n-k)*a(k). - Benoit Cloitre, Jul 27 2008
Recurrence: n*a(n) = 2*(3*n-4)*a(n-1) - (n+2)*a(n-2) - 2*(2*n-7)*a(n-3). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ sqrt(41-3*sqrt(41))*((5+sqrt(41))/2)^n/(16*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 18 2012
a(n) = Sum_{k=1..n} (binomial(2*k-2, k-1)*Sum_{i=0..n-k} binomial(k, n-k-i)*binomial(k+i-1, k-1)/k), n > 0, a(0)=1. - Vladimir Kruchinin, Jan 24 2013
a(n+1) starting (1, 3, ...) = (first n terms) dot product (first n difference terms), added to a(n). - Gary W. Adamson, May 20 2013
Extensions
More terms from Emeric Deutsch, Dec 31 2006