cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110935 a(n) = if n mod 2 = 0 then 8*F(n)-n otherwise 8*F(n)-4, where F() = Fibonacci numbers A000045.

Original entry on oeis.org

0, 4, 6, 12, 20, 36, 58, 100, 160, 268, 430, 708, 1140, 1860, 3002, 4876, 7880, 12772, 20654, 33444, 54100, 87564, 141666, 229252, 370920, 600196, 971118, 1571340, 2542460, 4113828, 6656290, 10770148, 17426440, 28196620, 45623062, 73819716, 119442780, 193262532
Offset: 0

Views

Author

N. J. A. Sloane, Sep 30 2007

Keywords

Comments

Number of self-avoiding walks on the strip {0,1} X Z.
Variant of A038577. [R. J. Mathar, Dec 13 2008]

Programs

  • Mathematica
    LinearRecurrence[{1, 3, -2, -3, 1, 1}, {0, 4, 6, 12, 20, 36}, 40] (* Jean-François Alcover, Jan 09 2019 *)
    Table[If[EvenQ[n],8Fibonacci[n]-n,8Fibonacci[n]-4],{n,0,40}] (* Harvey P. Dale, Jun 12 2019 *)
  • PARI
    a(n) = if (n % 2, 8*fibonacci(n)-4, 8*fibonacci(n)-n); \\ Michel Marcus, Sep 07 2015

Formula

G.f.: -2*x*(2*x^4-x^3-3*x^2+x+2) / ((x-1)^2*(x+1)^2*(x^2+x-1)). - Colin Barker, Mar 18 2013