cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A110936 a(n) = denominator(Bernoulli(prime(n) - 1))/prime(n).

Original entry on oeis.org

1, 2, 6, 6, 6, 210, 30, 42, 6, 30, 462, 51870, 330, 42, 6, 30, 6, 930930, 966, 66, 1919190, 42, 6, 690, 46410, 330, 42, 6, 1919190, 14790, 34314, 66, 30, 1974, 30, 14322, 11430510, 798, 6, 30, 6, 39921071190, 66, 4501770, 870, 1229718, 43725066, 42, 6
Offset: 1

Views

Author

Vladeta Jovovic, Jan 21 2006

Keywords

Examples

			From _Peter Luschny_, Mar 30 2019: (Start)
n = 12 -> prime(12) - 1 = 37 - 1 = 36,
D = divisors(36) \ {36} = {1, 2, 3, 4, 6, 9, 12, 18},
P = {p: (p-1) in D, p prime} = {2, 3, 5, 7, 13, 19},
Product(P) = 51870 = a(n).
.
n = 18 -> prime(18) - 1 = 61 - 1 = 60,
D = divisors(60) \ {60} = {1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30},
P = {p: (p-1) in D, p prime} = = {2, 3, 5, 7, 11, 13, 31},
Product(P) = 930930 = a(n).
(End)
		

Crossrefs

Programs

  • Maple
    a := proc(n) if not isprime(n+1) then return NULL fi;
    numtheory[divisors](n) minus {n};
    map(i->i+1, %); mul(i, i=select(isprime, %)) end:
    seq(a(n), n=1..226); # Peter Luschny, Mar 30 2019
  • Mathematica
    a[n_] := (p = Prime[n]; Denominator[ BernoulliB[p - 1]]/p); Table[a[n], {n, 1, 49}] (* Jean-François Alcover, Dec 13 2012 *)

Formula

6 divides a(n) for n >= 3. a(n) is squarefree. - Peter Luschny, Mar 30 2019