cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A366923 a(n) = A110936(n)/6 for n >= 3.

Original entry on oeis.org

1, 1, 1, 35, 5, 7, 1, 5, 77, 8645, 55, 7, 1, 5, 1, 155155, 161, 11, 319865, 7, 1, 115, 7735, 55, 7, 1, 319865, 2465, 5719, 11, 5, 329, 5, 2387, 1905085, 133, 1, 5, 1, 6653511865, 11, 750295, 145, 204953, 7287511, 7, 1, 455, 295, 1, 6596725135, 11, 85, 1, 5, 45353, 2972515, 4643045
Offset: 3

Views

Author

Hugo Pfoertner, Nov 14 2023

Keywords

Comments

(k^prime(n) - k)/prime(n) == 0 (mod 6*a(n)) for all k>=0.

Crossrefs

Cf. A366488.

A309132 a(n) is the denominator of F(n) = A027641(n-1)/n + A027642(n-1)/n^2.

Original entry on oeis.org

1, 1, 1, 16, 1, 36, 1, 64, 27, 100, 1, 144, 1, 196, 75, 256, 1, 324, 1, 400, 49, 484, 1, 576, 125, 676, 243, 784, 1, 900, 1, 1024, 363, 1156, 1225, 1296, 1, 1444, 169, 1600, 1, 1764, 1, 1936, 135, 2116, 1, 2304, 343, 2500, 867, 2704, 1, 2916, 3025, 3136, 361, 3364, 1, 3600, 1, 3844, 1323, 4096, 845, 4356, 1
Offset: 1

Views

Author

Thomas Ordowski, Jul 14 2019

Keywords

Comments

It seems that the numerator of F(n) is the numerator of (B(n-1) + 1/n), where B(k) is the k-th Bernoulli number; if so, for n > 2, the numerator of F(n) is A174341(n-1). How to prove it?
Conjecture: for n > 1, a(n) = 1 if and only if n is prime.
Is this conjecture equivalent to the Agoh-Giuga conjecture?
Theorem 1. If p is prime, then a(p) = 1. Proof. a(2) = 1, so let p be an odd prime. By the von Staudt-Clausen theorem, if k is even, then B(k) = A(k) - Sum_{prime q, q-1 | k} 1/q, where A(k) is an integer and the sum is over all primes q such that q-1 divides k. Thus B(k) = N(k)/D(k) with D(k) = Product_{prime q, q-1 | k} q. Now let k = p-1. Then N(p-1)/D(p-1) = B(p-1) = A(p-1) - 1/p - Sum_{prime q < p, q-1 | p-1} 1/q (*). Add 1/p to both sides of (*) and multiply by p*D(p-1) to get p*N(p-1) + D(p-1) = p*D(p-1)*(A(p-1) - Sum_{prime q < p, q-1 | p-1} 1/q) (**). Now p | D(p-1), so p^2 | p*D(p-1) in (**). The denominators on the right side of (**) are all of the form q < p. Therefore, p^2 divides both sides of (**). Hence F(p) = N(p-1)/p + D(p-1)/p^2 is an integer, so a(p) = 1. - Jonathan Sondow, Jul 14 2019
Conjecture: composite numbers n such that a(n) is squarefree are only the Carmichael numbers A002997. Cf. A309235. - Thomas Ordowski, Jul 15 2019
Conjecture checked up to n = 101101. - Amiram Eldar, Jul 16 2019
Theorem 2. If n is a prime or a Carmichael number, then a(n) = A326690(n) = denominator of (Sum_{prime p | n} 1/p - 1/n). The proof is a generalization of that of Theorem 1. (Note that Theorem 2 implies Theorem 1, since if n is prime, then (Sum_{prime p | n} 1/p - 1/n) = 1/n - 1/n = 0/1, so a(p) = A326690(n) = 1.) For n a prime or a Carmichael number, an application of Theorem 2 is computing a(n) without calculating Bernoulli(n-1) which may be huge; see A309268 and A326690. - Jonathan Sondow, Jul 19 2019
The values of F(n) when n is prime are A327033. - Jonathan Sondow, Aug 16 2019

Examples

			F(n) = 2/1, 0/1, 1/1, 1/16, 1/1, 1/36, 1/1, 1/64, 7/27, 1/100, 1/1, 1/144, -37/1, 1/196, 37/75, 1/256, -211/1, 1/324, 2311/1, 1/400, -407389/49, ...
		

Crossrefs

Programs

  • Magma
    [Denominator(Numerator(Bernoulli(n-1))/n + Denominator(Bernoulli(n-1))/n^2): n in [1..70]]; // Vincenzo Librandi, Jul 14 2019
  • Mathematica
    Table[Denominator[Numerator[BernoulliB[n - 1]] / n + Denominator[ BernoulliB[ n - 1]] / n^2], {n, 70}] (* Vincenzo Librandi, Jul 14 2019 *)
  • PARI
    a(n) = denominator(numerator(bernfrac(n-1))/n + denominator(bernfrac(n-1))/n^2); \\ Michel Marcus, Jul 14 2019
    

Formula

a(p) = 1 for prime p.
a(2k) = (2k)^2 for k > 1.
Conjecture: for k > 0, a(2k+1) = (2k+1)^2 iff 2k+1 is in A121707.
Denominator(F(p)/p) = 1 for the primes p = 2 and p = 1277 but for no other prime p < 1.5 * 10^4. Does denominator(F(p)/p) = 1 for any prime p > 1.5 * 10^4? - Jonathan Sondow, Jul 14 2019
Similarly, Sum_{k=1..p-1} k^(p-1) == -1 (mod p^2) for the prime p = 1277. - Thomas Ordowski, Jul 15 2019
a(n) = denominator(Sum_{prime p | n} 1/p - 1/n) if n is a prime or a Carmichael number. - Jonathan Sondow, Jul 19 2019

A166062 a(n) = denominator(Bernoulli(prime(n) - 1)).

Original entry on oeis.org

2, 6, 30, 42, 66, 2730, 510, 798, 138, 870, 14322, 1919190, 13530, 1806, 282, 1590, 354, 56786730, 64722, 4686, 140100870, 3318, 498, 61410, 4501770, 33330, 4326, 642, 209191710, 1671270, 4357878, 8646, 4110, 274386, 4470, 2162622, 1794590070, 130074
Offset: 1

Views

Author

Paul Curtz, Oct 05 2009

Keywords

Comments

Divisibility through terms of A008578 is a consequence of the Staudt-Clausen theorem.
(Vaguely similar divisibility properties are considered in A165248 and A165943.)
The first 250 entries are all different. Is this true in general?
Would sorting the entries yield the full A090801?
a(n) > 1 is the largest number k such that x*y^p == y*x^p (mod k) for all integers x and y, where p = prime(n). Example: x*y^19 == y*x^19 (mod 798). - Michel Lagneau, Apr 19 2012
Comment from Herbert Kociemba, May 29 2020: (Start)
For each n there is exactly one member of the sequence whose factorization has prime(n) as its largest prime factor, namely a(n). From this we conclude:
1. All elements of the sequence are different.
2. Not all denominators of Bernoulli numbers appear in this sequence. For example the denominator of B(20), 330=2*3*5*11 never appears because the unique sequence element with largest prime divisor 11=prime(5) is a(5)=2*3*11. (End)

Crossrefs

Programs

  • Maple
    seq(denom(bernoulli(ithprime(n)-1)), n=1..38); # Peter Luschny, Jul 14 2019
  • Mathematica
    Table[Denominator[BernoulliB[n - 1]], {n, Prime[Range[38]]}] (* Harvey P. Dale, Apr 22 2012 *)
    Table[GCD @@ Table[(n^k - n), {n, 2, 13}], {k, Prime[Range[100]]}] (* Increase n to 80 and k to 1000 for first thousand terms. - Herbert Kociemba, May 05 2020 *)
    a[i_] := Times @@ Select[Prime[Range[i]], Mod[Prime[i] - 1, # - 1] == 0&]; Table[a[i], {i, 1, 100}](* Herbert Kociemba, May 06 2020 *)
  • PARI
    a(n)=denominator(bernfrac(prime(n)-1)) \\ Charles R Greathouse IV, Apr 30 2012

Formula

a(n) = A027642(A008578(n) - 1).

Extensions

Edited by Peter Luschny, Jul 14 2019

A366490 a(n) = (n^17 - n)/17.

Original entry on oeis.org

0, 0, 7710, 7596480, 1010580540, 44878791360, 995685849690, 13684147881600, 132458812569720, 981010688215680, 5882352941176470, 29732178147017280, 130506535690613940, 508847995257725760, 1793608631137129170, 5795654431511374080, 17361641481138401520
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2023

Keywords

Comments

See A366488 for further information.

Crossrefs

Programs

Formula

a(n) == 0 (mod 30), with 30 = A110936(primepi(17)). - Hugo Pfoertner, Nov 14 2023

A366491 a(n) = (n^19 - n)/19.

Original entry on oeis.org

0, 0, 27594, 61171656, 14467258260, 1003867701480, 32071565263710, 599941851861744, 7585009898729256, 71097458824894320, 526315789473684210, 3218899497284976120, 16814736808980154044, 76943173177655058456, 314542313628890231430, 1166756747396368729440, 3976729669784964390480, 12582759772902701307744, 37275544492386193492506, 104127350297911241532840, 275941052631578947368420
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2023

Keywords

Comments

See A366488 for further information.

Crossrefs

Programs

Formula

a(n) = 0 (mod 42), with 42 = A110936(primepi(19)). - Hugo Pfoertner, Nov 14 2023
Showing 1-5 of 5 results.