cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A309235 Composite numbers m such that A309132(m) <= m.

Original entry on oeis.org

561, 1105, 1729, 2465, 2821, 5005, 6601, 8911, 10585, 15841, 28405, 29341, 41041, 46657, 47125, 52633, 62745, 63973, 75361, 98605, 101101
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Jul 17 2019

Keywords

Comments

It contains all the Carmichael numbers A002997 and the numbers 5005, 28405, 47125, 98605, ...
Carmichael numbers m for which A309132(m) < m are 561, 1105, 46657, 52633, ...
If m is a Carmichael number, then not only is A309132(m) <= m, but in fact A309132(m) | m. (Proof. As m is a Carmichael number, m | D(m-1) where B(k) = N(k)/D(k) is the k-th Bernoulli number. So I := N(m-1) + D(m-1)/m is an integer. Hence A309132(m) = Denominator(I/m) is a divisor of m.) - Jonathan Sondow, Jul 17 2019
Conjecture: Composite numbers m such that A309132(m) | m are only the Carmichael numbers. - Amiram Eldar and Thomas Ordowski, Jul 18 2019
If A309132(m) | m and m | A027642(m-1), then A309132(m) | A027642(m-1). It seems that, according to the data, a composite m is a Carmichael number if and only if A309132(m) | A027642(m-1). - Thomas Ordowski, Jul 19 2019

Crossrefs

Cf. A002997, A027641, A027642, A309132 (see the last conjecture).

Programs

  • Mathematica
    f[n_] := Denominator[Numerator[BernoulliB[n - 1]] / n + Denominator[BernoulliB[n - 1]] / n^2]; Select[Range[10^4], CompositeQ[#] && f[#] <= # &]
  • PARI
    f(n) = my(b=bernfrac(n-1)); denominator(numerator(b)/n + denominator(b)/n^2); \\ A309132
    isok(n) = (n>1) && !isprime(n) && (f(n) <= n); \\ Michel Marcus, Jul 17 2019

A309268 Carmichael numbers m such that A309132(m) < m.

Original entry on oeis.org

561, 1105, 46657, 52633, 188461, 670033, 825265, 838201, 1082809, 2455921, 2628073, 4463641, 4767841, 5632705, 8830801, 11119105, 13187665, 16778881, 18307381, 18900973, 21584305, 22665505, 31146661, 31405501, 31692805, 34657141, 36765901, 38624041, 40280065
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Jul 20 2019

Keywords

Comments

A309132(m) divides m for all Carmichael numbers m, but apparently most of them equal A309132(m). Of the first 10000 Carmichael numbers, only 1341 are in this sequence.
The ratios a(n)/A309132(a(n)) are 3, 5, 13, 7, 133, 7, 133, 7, 7, 793, 7, 13, 13, ...
By Jonathan Sondow's theorem (cf. comments in A309132), these are Carmichael numbers m such that denominator(Sum_{prime p|m}1/p - 1/m) < m, i.e., A326690(m) < m.
Problem: are there Carmichael numbers m such that A309132(m) is prime? Equivalently, Carmichael numbers m such that A326690(m) is prime. None exist below 2^64. Conjecture: there are no such Carmichael numbers.

Crossrefs

Subsequence of A002997 and A309235.

Programs

  • Mathematica
    aQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]] && Denominator[ Total@(1/FactorInteger[n][[;; , 1]]) - 1/n] < n; Select[Range[10^6], aQ]

A326582 A signed variant of A309132.

Original entry on oeis.org

1, 1, 1, 4, 1, 9, 1, 16, 27, 25, 1, 36, 1, 49, -75, 64, 1, 81, -1, 100, 49, 121, -1, 144, 125, 169, -243, 196, 1, 225, -1, 256, 363, 289, -1225, 324, 1, 361, -169, 400, 1, 441, -1, 484, 135, 529, -1, 576, 343, 625, -867, 676, 1, 729, -3025, 784, 361, 841, -1
Offset: 0

Views

Author

Peter Luschny, Jul 15 2019

Keywords

Comments

See A309132 for background and conjectures.

Crossrefs

Programs

  • Maple
    nB := n -> numer(bernoulli(n-1,1/2)): dB := n -> denom(bernoulli(n-1,1/2)):
    R := n -> n/(nB(n) + dB(n)/n): a := n -> numer(R(n+1)/4^irem(n,2)):
    seq(a(n), n=0..58);

Formula

a(n) = numerator(R(n+1)/4^mod(n,2)) with R(n) = n/(nB(n) + dB(n)/n) and nB(n) = numerator(B(n-1, 1/2)), dB(n) = denominator(B(n-1, 1/2)) where B(n, x) denotes the Bernoulli polynomials.
|a(2*n)| = A309132(2*n + 1) for n >= 0.
a(2*n+1) = (n + 1)^2 for n >= 0.

A002997 Carmichael numbers: composite numbers k such that a^(k-1) == 1 (mod k) for every a coprime to k.

Original entry on oeis.org

561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973, 75361, 101101, 115921, 126217, 162401, 172081, 188461, 252601, 278545, 294409, 314821, 334153, 340561, 399001, 410041, 449065, 488881, 512461, 530881, 552721
Offset: 1

Views

Author

Keywords

Comments

V. Šimerka found the first 7 terms of this sequence 25 years before Carmichael (see the link and also the remark of K. Conrad). - Peter Luschny, Apr 01 2019
k is composite and squarefree and for p prime, p|k => p-1|k-1.
An odd composite number k is a pseudoprime to base a iff a^(k-1) == 1 (mod k). A Carmichael number is an odd composite number k which is a pseudoprime to base a for every number a prime to k.
A composite odd number k is a Carmichael number if and only if k is squarefree and p-1 divides k-1 for every prime p dividing k. (Korselt, 1899)
Ghatage and Scott prove using Fermat's little theorem that (a+b)^k == a^k + b^k (mod k) (the freshman's dream) exactly when k is a prime (A000040) or a Carmichael number. - Jonathan Vos Post, Aug 31 2005
Alford et al. have constructed a Carmichael number with 10333229505 prime factors, and have also constructed Carmichael numbers with m prime factors for every m between 3 and 19565220. - Jonathan Vos Post, Apr 01 2012
Thomas Wright proved that for any numbers b and M in N with gcd(b,M) = 1, there are infinitely many Carmichael numbers k such that k == b (mod M). - Jonathan Vos Post, Dec 27 2012
Composite numbers k relatively prime to 1^(k-1) + 2^(k-1) + ... + (k-1)^(k-1). - Thomas Ordowski, Oct 09 2013
Composite numbers k such that A063994(k) = A000010(k). - Thomas Ordowski, Dec 17 2013
Odd composite numbers k such that k divides A002445((k-1)/2). - Robert Israel, Oct 02 2015
If k is a Carmichael number and gcd(b-1,k)=1, then (b^k-1)/(b-1) is a pseudoprime to base b by Steuerwald's theorem; see the reference in A005935. - Thomas Ordowski, Apr 17 2016
Composite numbers k such that p^k == p (mod k) for every prime p <= A285512(k). - Max Alekseyev and Thomas Ordowski, Apr 20 2017
If a composite m < A285549(n) and p^m == p (mod m) for every prime p <= prime(n), then m is a Carmichael number. - Thomas Ordowski, Apr 23 2017
The sequence of all Carmichael numbers can be defined as follows: a(1) = 561, a(n+1) = smallest composite k > a(n) such that p^k == p (mod k) for every prime p <= n+2. - Thomas Ordowski, Apr 24 2017
An integer m > 1 is a Carmichael number if and only if m is squarefree and each of its prime divisors p satisfies both s_p(m) >= p and s_p(m) == 1 (mod p-1), where s_p(m) is the sum of the base-p digits of m. Then m is odd and has at least three prime factors. For each prime factor p, the sharp bound p <= a*sqrt(m) holds with a = sqrt(17/33) = 0.7177.... See Kellner and Sondow 2019. - Bernd C. Kellner and Jonathan Sondow, Mar 03 2019
Carmichael numbers are special polygonal numbers A324973. The rank of the n-th Carmichael number is A324975(n). See Kellner and Sondow 2019. - Jonathan Sondow, Mar 26 2019
An odd composite number m is a Carmichael number iff m divides denominator(Bernoulli(m-1)). The quotient is A324977. See Pomerance, Selfridge, & Wagstaff, p. 1006, and Kellner & Sondow, section on Bernoulli numbers. - Jonathan Sondow, Mar 28 2019
This is setwise difference A324050 \ A008578. Many of the same identities apply also to A324050. - Antti Karttunen, Apr 22 2019
If k is a Carmichael number, then A309132(k) = A326690(k). The proof generalizes that of Theorem in A309132. - Jonathan Sondow, Jul 19 2019
Composite numbers k such that A111076(k)^(k-1) == 1 (mod k). Proof: the multiplicative order of A111076(k) mod k is equal to lambda(k), where lambda(k) = A002322(k), so lambda(k) divides k-1, qed. - Thomas Ordowski, Nov 14 2019
For all positive integers m, m^k - m is divisible by k, for all k > 1, iff k is either a Carmichael number or a prime, as is used in the proof by induction for Fermat's Little Theorem. Also related are A182816 and A121707. - Richard R. Forberg, Jul 18 2020
From Amiram Eldar, Dec 04 2020, Apr 21 2024: (Start)
Ore (1948) called these numbers "Numbers with the Fermat property", or, for short, "F numbers".
Also called "absolute pseudoprimes". According to Erdős (1949) this term was coined by D. H. Lehmer.
Named by Beeger (1950) after the American mathematician Robert Daniel Carmichael (1879 - 1967). (End)
For ending digit 1,3,5,7,9 through the first 10000 terms, we see 80.3, 4.1, 7.4, 3.8 and 4.3% apportionment respectively. Why the bias towards ending digit "1"? - Bill McEachen, Jul 16 2021
It seems that for any m > 1, the remainders of Carmichael numbers modulo m are biased towards 1. The number of terms congruent to 1 modulo 4, 6, 8, ..., 24 among the first 10000 terms: 9827, 9854, 8652, 8034, 9682, 5685, 6798, 7820, 7880, 3378 and 8518. - Jianing Song, Nov 08 2021
Alford, Granville and Pomerance conjectured in their 1994 paper that a statement analogous to Bertrand's Postulate could be applied to Carmichael numbers. This has now been proved by Daniel Larsen, see link below. - David James Sycamore, Jan 17 2023

References

  • N. G. W. H. Beeger, On composite numbers n for which a^n == 1 (mod n) for every a prime to n, Scripta Mathematica, Vol. 16 (1950), pp. 133-135.
  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover Publications, Inc. New York, 1966, Table 18, Page 44.
  • David M. Burton, Elementary Number Theory, 5th ed., McGraw-Hill, 2002.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 142.
  • CRC Standard Mathematical Tables and Formulae, 30th ed., 1996, p. 87.
  • Richard K. Guy, Unsolved Problems in Number Theory, A13.
  • Øystein Ore, Number Theory and Its History, McGraw-Hill, 1948, Reprinted by Dover Publications, 1988, Chapter 14.
  • Paul Poulet, Tables des nombres composés vérifiant le théorème du Fermat pour le module 2 jusqu'à 100.000.000, Sphinx (Brussels), 8 (1938), 42-45.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 22, 100-103.
  • Wacław Sierpiński, A Selection of Problems in the Theory of Numbers. Macmillan, NY, 1964, p. 51.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 145-146.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See entry 561 at p. 157.

Crossrefs

Programs

  • Haskell
    a002997 n = a002997_list !! (n-1)
    a002997_list = [x | x <- a024556_list,
    all (== 0) $ map ((mod (x - 1)) . (subtract 1)) $ a027748_row x]
    -- Reinhard Zumkeller, Apr 12 2012
    
  • Magma
    [n: n in [3..53*10^4 by 2] | not IsPrime(n) and n mod CarmichaelLambda(n) eq 1]; // Bruno Berselli, Apr 23 2012
    
  • Maple
    filter:= proc(n)
      local q;
      if isprime(n) then return false fi;
      if 2 &^ (n-1) mod n <> 1 then return false fi;
      if not numtheory:-issqrfree(n) then return false fi;
      for q in numtheory:-factorset(n) do
        if (n-1) mod (q-1) <> 0 then return false fi
      od:
      true;
    end proc:
    select(filter, [seq(2*k+1,k=1..10^6)]); # Robert Israel, Dec 29 2014
    isA002997 := n -> 0 = modp(n-1, numtheory:-lambda(n)) and not isprime(n) and n <> 1:
    select(isA002997, [$1..10000]); # Peter Luschny, Jul 21 2019
  • Mathematica
    Cases[Range[1,100000,2], n_ /; Mod[n, CarmichaelLambda[n]] == 1 && ! PrimeQ[n]] (* Artur Jasinski, Apr 05 2008; minor edit from Zak Seidov, Feb 16 2011 *)
    Select[Range[1,600001,2],CompositeQ[#]&&Mod[#,CarmichaelLambda[#]]==1&] (* Harvey P. Dale, Jul 08 2023 *)
  • PARI
    Korselt(n)=my(f=factor(n));for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1
    isA002997(n)=n%2 && !isprime(n) && Korselt(n) && n>1 \\ Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    is_A002997(n, F=factor(n)~)={ #F>2 && !foreach(F,f,(n%(f[1]-1)==1 && f[2]==1) || return)} \\ No need to check parity: if efficiency is needed, scan only odd numbers. - M. F. Hasler, Aug 24 2012, edited Mar 24 2022
    
  • Python
    from itertools import islice
    from sympy import nextprime, factorint
    def A002997_gen(): # generator of terms
        p, q = 3, 5
        while True:
            for n in range(p+2,q,2):
                f = factorint(n)
                if max(f.values()) == 1 and not any((n-1) % (p-1) for p in f):
                    yield n
            p, q = q, nextprime(q)
    A002997_list = list(islice(A002997_gen(),20)) # Chai Wah Wu, May 11 2022
  • Sage
    def isCarmichael(n):
        if n == 1 or is_even(n) or is_prime(n):
            return False
        factors = factor(n)
        for f in factors:
            if f[1] > 1: return False
            if (n - 1) % (f[0] - 1) != 0:
                return False
        return True
    print([n for n in (1..20000) if isCarmichael(n)]) # Peter Luschny, Apr 02 2019
    

Formula

Sum_{n>=1} 1/a(n) is in the interval (0.004706, 27.8724) (Bayless and Kinlaw, 2017). The upper bound was reduced to 0.0058 by Kinlaw (2023). - Amiram Eldar, Oct 26 2020, Feb 24 2024

Extensions

Links for lists of Carmichael numbers updated by Jan Kristian Haugland, Mar 25 2009 and Danny Rorabaugh, May 05 2017

A326690 Denominator of the fraction (Sum_{prime p | n} 1/p - 1/n).

Original entry on oeis.org

1, 1, 1, 4, 1, 3, 1, 8, 9, 5, 1, 4, 1, 7, 15, 16, 1, 9, 1, 20, 7, 11, 1, 24, 25, 13, 27, 28, 1, 1, 1, 32, 33, 17, 35, 36, 1, 19, 13, 40, 1, 21, 1, 44, 45, 23, 1, 16, 49, 25, 51, 52, 1, 27, 11, 8, 19, 29, 1, 60, 1, 31, 63, 64, 65, 11, 1, 68, 69, 35, 1, 72
Offset: 1

Views

Author

Jonathan Sondow, Jul 18 2019

Keywords

Comments

Theorem. If n is a prime or a Carmichael number, then a(n) = A309132(n) = denominator of (N(n-1)/n + D(n-1)/n^2), where B(k) = N(k)/D(k) is the k-th Bernoulli number. This is a generalization of Theorem 1 in A309132 that A309132(p) = 1 if p is a prime. The proof generalizes that in A309132. As an application of Theorem, for n a prime or a Carmichael number one can compute A309132(n) without calculating Bernoulli numbers; see A309268.
A composite number n is a Giuga number A007850 if and only if a(n) = 1. (In fact, Sum_{prime p | n} 1/p - 1/n = 1 for all known Giuga numbers n.)
Semiprimes m = pq such that 1/p + 1/q - 1/m = p/q are exactly A190275. - Amiram Eldar and Thomas Ordowski, Jul 22 2019
The preceding comment may be rephrased as "Semiprimes m = pq such that A326689(m) = p and a(m) = q are exactly A190275." - Jonathan Sondow, Jul 22 2019
More generally, semiprimes m = pq such that 1/p + 1/q - 1/m = P/Q are exactly A190273, where P <> Q are primes. In other words, semiprimes m such that A326689(m) is prime and a(m) is prime are exactly A190273. - Amiram Eldar and Thomas Ordowski, Jul 25 2019

Examples

			-1/1, 0/1, 0/1, 1/4, 0/1, 2/3, 0/1, 3/8, 2/9, 3/5, 0/1, 3/4, 0/1, 4/7, 7/15, 7/16, 0/1, 7/9, 0/1, 13/20, 3/7, 6/11, 0/1, 19/24, 4/25, 7/13, 8/27, 17/28, 0/1, 1/1
a(12) = denominator of (Sum_{prime p | 12} 1/p - 1/12) = denominator of (1/2 + 1/3 - 1/12) = denominator of 3/4 = 4.
Computing A309132(561) involves numerator(B(560)) which has 865 digits. But 561 is a Carmichael number, so Theorem implies A309132(561) = a(561) = denominator(1/3 + 1/11 + 1/17 - 1/561) = denominator(90/187) = 187.
		

Crossrefs

Numerators are A326689. Quotients n/a(n) are A326691.
Cf. A069359, A007947 (denominator of Sum_{prime p | n} 1/p).

Programs

  • Magma
    [1] cat [Denominator(&+[1/p:p in PrimeDivisors(k)]-1/k):k in [2..72]]; // Marius A. Burtea, Jul 27 2019
  • Maple
    A326690 := n -> denom((A069359(n)-1)/n):
    seq(A326690(n), n=1..72); # Peter Luschny, Jul 22 2019
  • Mathematica
    PrimeFactors[n_] := Select[Divisors[n], PrimeQ];
    f[n_] := Denominator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n];
    Table[ f[n], {n, 100}]
  • PARI
    a(n) = denominator(sumdiv(n, d, isprime(d)/d) - 1/n); \\ Michel Marcus, Jul 19 2019
    
  • SageMath
    p = lambda n: [n//f[0] for f in factor(n)]
    A326690 = lambda n: ((sum(p(n)) - 1)/n).denominator()
    [A326690(n) for n in (1..72)] # Peter Luschny, Jul 22 2019
    

Formula

a(n) = 1 if n is a prime or a Giuga number A007850.
a(n) = denominator of (N(n-1)/n + D(n-1)/n^2) if n is a Carmichael number A002997.
a(n) = denominator((A069359(n) - 1)/n). - Peter Luschny, Jul 22 2019

A174341 a(n) = Numerator of Bernoulli(n, 1) + 1/(n+1).

Original entry on oeis.org

2, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, -37, 1, 37, 1, -211, 1, 2311, 1, -407389, 1, 37153, 1, -1181819909, 1, 76977929, 1, -818946931, 1, 277930363757, 1, -84802531453217, 1, 90219075042851, 1, -711223555487930419, 1, 12696640293313423, 1, -6367871182840222481, 1, 35351107998094669831, 1, -83499808737903072705023, 1, 12690449182849194963361, 1
Offset: 0

Views

Author

Paul Curtz, Mar 16 2010

Keywords

Comments

a(n) is numerator of (A164555(n)/A027642(n) + 1/(n+1)).
1/(n+1) and Bernoulli(n,1) are autosequences in the sense that they remain the same (up to sign) under inverse binomial transform. This feature is kept for their sum, a(n)/A174342(n) = 2, 1, 1/2, 1/4, 1/6, 1/6, 1/6, 1/8, 7/90, 1/10, ...
Similar autosequences are also A000045, A001045, A113405, A000975 preceded by two zeros, and A140096.
Conjecture: the numerator of (A164555(n)/(n+1) + A027642(n)/(n+1)^2) is a(n) and the denominator of this fraction is equal to 1 if and only if n+1 is prime or 1. Cf. A309132. - Thomas Ordowski, Jul 09 2019
The "if" part of the conjecture is true: see the theorems in A309132 and A326690. The values of the numerator when n+1 is prime are A327033. - Jonathan Sondow, Aug 15 2019

Crossrefs

Programs

  • Magma
    [2,1] cat [Numerator(Bernoulli(n)+1/(n+1)): n in [2..40]]; // Vincenzo Librandi, Jul 18 2019
  • Maple
    A174341 := proc(n) bernoulli(n,1)+1/(n+1); numer(%) end proc: # R. J. Mathar, Nov 19 2010
  • Mathematica
    a[n_] := Numerator[BernoulliB[n, 1] + 1/(n + 1)];
    Table[a[n], {n, 0, 47}] (* Peter Luschny, Jul 13 2019 *)
  • PARI
    B(n)=if(n!=1, bernfrac(n), -bernfrac(n));
    a(n)=numerator(B(n) + 1/(n + 1));
    for(n=0, 50, print1(a(n),", ")) \\ Indranil Ghosh, Jun 19 2017
    
  • PARI
    a(n)=numerator(bernpol(n, 1) + 1/(n + 1)); \\ Michel Marcus, Jun 26 2025
    
  • Python
    from sympy import bernoulli, Integer
    def a(n): return (bernoulli(n) + 1/Integer(n + 1)).numerator # Indranil Ghosh, Jun 19 2017
    

Extensions

Reformulation of the name by Peter Luschny, Jul 13 2019

A326689 Numerator of the fraction (Sum_{prime p | n} 1/p - 1/n).

Original entry on oeis.org

-1, 0, 0, 1, 0, 2, 0, 3, 2, 3, 0, 3, 0, 4, 7, 7, 0, 7, 0, 13, 3, 6, 0, 19, 4, 7, 8, 17, 0, 1, 0, 15, 13, 9, 11, 29, 0, 10, 5, 27, 0, 20, 0, 25, 23, 12, 0, 13, 6, 17, 19, 29, 0, 22, 3, 5, 7, 15, 0, 61, 0, 16, 29, 31, 17, 10, 0, 37, 25, 29, 0, 59, 0, 19, 13, 41
Offset: 1

Views

Author

Jonathan Sondow, Jul 18 2019

Keywords

Comments

See Comments on denominators in A326690.

Examples

			-1/1, 0/1, 0/1, 1/4, 0/1, 2/3, 0/1, 3/8, 2/9, 3/5, 0/1, 3/4, 0/1, 4/7, 7/15, 7/16, 0/1, 7/9, 0/1, 13/20, 3/7, 6/11, 0/1, 19/24, 4/25, 7/13, 8/27, 17/28, 0/1, 1/1
		

Crossrefs

Denominators are A326690. Cf. also A007850, A309132, A309235, A309378.
Cf. A028235.

Programs

  • Mathematica
    PrimeFactors[n_] := Select[Divisors[n], PrimeQ];
    g[n_] := Numerator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n];
    Table[ g[n], {n, 100}]
  • PARI
    a(n) = numerator(sumdiv(n, d, isprime(d)/d) - 1/n); \\ Michel Marcus, Jul 19 2019

Formula

a(p) = 0 if p is a prime.
a(g) = 1 if g is a known Giuga number (see my 2nd comment in A007850).

A327033 N(p-1)/p + D(p-1)/p^2 with p the n-th prime and B(k) = N(k)/D(k) the k-th Bernoulli number.

Original entry on oeis.org

0, 1, 1, 1, 1, -37, -211, 2311, 37153, -818946931, 277930363757, -711223555487930419, -6367871182840222481, 35351107998094669831, 12690449182849194963361, -15116334304443206742413679091, 1431925649981017658678758915153153, -19921854762028779869513196624259348280501
Offset: 1

Views

Author

Jonathan Sondow, Aug 15 2019

Keywords

Comments

a(n) is an integer, as conjectured by Thomas Ordowski and proved by the author in A309132 and A326690.
Ordowski also conjectured that the sequence is a subsequence of A174341.

Examples

			Prime(6) = 13 and B(12) = -691/2730, so a(6) = -691/13 + 2730/13^2 = -37.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := With[{p = Prime[n]}, With[{b = BernoulliB[p - 1]}, (p  Numerator[b] + Denominator[b])/p^2]];
    Table[a[n], {n, 1, 18}]
  • PARI
    a(n) = my(p = prime(n), b = bernfrac(p-1)); numerator(b)/p + denominator(b)/p^2; \\ Michel Marcus, Aug 16 2019
Showing 1-8 of 8 results.