cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 355 results. Next

A055553 Number of Carmichael numbers (A002997) less than 10^n.

Original entry on oeis.org

0, 0, 1, 7, 16, 43, 105, 255, 646, 1547, 3605, 8241, 19279, 44706, 105212, 246683, 585355, 1401644, 3381806, 8220777, 20138200, 49679870
Offset: 1

Views

Author

Keywords

References

  • Richard Pinch, Carmichael Numbers up to 10^20, ANTS 7.
  • Richard G. E. Pinch, The Carmichael numbers up to 10^21, Proceedings of Conference on Algorithmic Number Theory 2007.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 219.

Crossrefs

Cf. A002997.

Extensions

Updates from Pinch's articles sent by Charles R Greathouse IV, Dec 04 2005, Jul 16 2006, May 29 2007
a(21) from Pinch's paper by Charles R Greathouse IV, Feb 01 2009
a(22) from Shallue and Webster (2024) added by Amiram Eldar, Feb 23 2024
a(22) = 49679870 reported by Claude Goutier on Dec 28 2022 (see links). - N. J. A. Sloane, Apr 18 2024

A135720 a(n) is the smallest Carmichael number (A002997) with the n-th prime as its smallest prime divisor, or 0 if no such number exists.

Original entry on oeis.org

561, 1105, 1729, 75361, 29341, 162401, 334153, 1615681, 3581761, 399001, 294409, 252601, 1152271, 104569501, 2508013, 178837201, 6189121, 10267951, 10024561, 14469841, 4461725581, 985052881, 19384289, 23382529, 3828001, 90698401, 84350561, 6733693, 17098369
Offset: 2

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Examples

			a(2) = 561 because the smallest prime divisor of 561 is 3 which is the second prime.
		

Crossrefs

Extensions

Two missing terms and terms up to a(447) added by Donovan Johnson, Dec 25 2013
a(448)-a(615) in b-file from Max Alekseyev, Mar 11 2018
Escape clause added by Jianing Song, Dec 12 2021

A135717 a(n) = number of prime divisors of Carmichael numbers A002997(n).

Original entry on oeis.org

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 4, 4, 4, 3, 4, 3, 4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 4, 3, 3, 3, 4, 4, 4, 4, 4, 5, 4, 4, 4, 3, 4, 5, 4, 3, 3, 3, 4, 3, 4, 3, 3, 4, 4, 4, 4, 3, 4, 4, 4, 3, 4, 4, 3, 4, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 4, 3, 3, 3, 4, 3, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 5
Offset: 1

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Comments

Number of prime divisors is always >= 3. For the least Carmichael number with n prime factors see A006931.

Crossrefs

Formula

a(n) = A001221(A002997(n)). - M. F. Hasler, Apr 14 2015

A153508 Sarrus numbers A001567 that are not Carmichael numbers A002997.

Original entry on oeis.org

341, 645, 1387, 1905, 2047, 2701, 3277, 4033, 4369, 4371, 4681, 5461, 7957, 8321, 8481, 10261, 11305, 12801, 13741, 13747, 13981, 14491, 15709, 16705, 18705, 18721, 19951, 23001, 23377, 25761, 30121, 30889, 31417, 31609, 31621, 33153, 34945
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2008

Keywords

Comments

A composite number n is a Fermat pseudoprime to base b if and only if b^(n-1) == 1 (mod n). Fermat pseudoprimes to base 2 are sometimes called Poulet numbers, Sarrus numbers, or frequently just pseudoprimes. For any given base pseudoprimes will contain Carmichael numbers as a subset. This sequence consists of base-2 Fermat pseudoprimes without the Carmichael numbers.

Crossrefs

Programs

  • Magma
    for n:= 3 to 1052503 by 2 do
      if (IsOne(2^(n-1) mod n)
          and not IsPrime(n)
          and not n mod CarmichaelLambda(n) eq 1)
          then n;
          end if;
    end for; // Brad Clardy, Dec 25 2014
  • Maple
    filter:= proc(n)
    local q;
       if isprime(n) then return false fi;
       if 2 &^(n-1) mod n <> 1 then return false fi;
       if not numtheory:-issqrfree(n) then return true fi;
       for q in numtheory:-factorset(n) do
         if (n-1) mod (q-1) <> 0 then return true fi;
       od:
       false
    end proc:
    select(filter, [$1..10^5]); # Robert Israel, Dec 29 2014
  • Mathematica
    Select[Range[3, 35000, 2], !PrimeQ[#] && PowerMod[2, # - 1, # ] == 1 && !Divisible[# - 1, CarmichaelLambda[#]] &] (* Amiram Eldar, Jun 25 2019 *)

A153513 Composite numbers k such that 2^k-2 and 3^k-3 are both divisible by k and k is not a Carmichael number (A002997).

Original entry on oeis.org

2701, 18721, 31621, 49141, 83333, 83665, 88561, 90751, 93961, 104653, 107185, 176149, 204001, 226801, 228241, 276013, 282133, 534061, 563473, 574561, 622909, 653333, 665281
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2008

Keywords

Crossrefs

Intersection of A153514 and A153508 (excluding the number 1).

Programs

  • Maple
    filter:= proc(n) local p;
      if isprime(n) or (2 &^n - 2 mod n <> 0) or (3 &^n - 3 mod n <> 0) then return false fi;
      if n::even then return true fi;
      if not numtheory:-issqrfree(n) then return true fi;
      for p in numtheory:-factorset(n) do
        if n-1 mod (p-1) <> 0 then return true fi
      od;
    false
    end proc:
    select(filter, [$2..10^6]); # Robert Israel, Jan 29 2017
  • Mathematica
    Reap[Do[If[CompositeQ[n] && Divisible[2^n-2, n] && Divisible[3^n-3, n] && Mod[n, CarmichaelLambda[n]] != 1, Print[n]; Sow[n]], {n, 2, 10^6}]][[2, 1]] (* Jean-François Alcover, Mar 25 2019 *)

A081702 Largest prime factor of the n-th Carmichael number (A002997).

Original entry on oeis.org

17, 17, 19, 29, 31, 41, 67, 73, 73, 61, 41, 97, 103, 89, 37, 31, 101, 241, 73, 233, 61, 109, 101, 113, 109, 397, 409, 67, 211, 137, 163, 181, 271, 421, 61, 197, 271, 199, 433, 73, 151, 61, 577, 271, 307, 37, 163, 211, 631, 541, 113, 353, 199, 331, 461, 101, 97
Offset: 1

Views

Author

Lekraj Beedassy, Apr 02 2003

Keywords

Crossrefs

Programs

  • Mathematica
    CarmichaelQ[n_] := Not[PrimeQ[n]] && Divisible[n - 1, CarmichaelLambda[n]]; FactorInteger[#][[-1, 1]]& /@ Select[Range[4, 10^7], CarmichaelQ] (* Amiram Eldar, Jun 24 2019 after Jean-François Alcover at A141710 *)

Formula

a(n) = A006530(A002997(n)). - Amiram Eldar, Jun 24 2019

A135721 a(n) is the smallest Carmichael number (A002997) divisible by the n-th prime, or 0 if no such number exists.

Original entry on oeis.org

561, 1105, 1729, 561, 1105, 561, 1729, 6601, 2465, 2821, 29341, 6601, 334153, 62745, 2433601, 74165065, 29341, 8911, 10024561, 10585, 2508013, 55462177, 62745, 46657, 101101, 52633, 84350561, 188461, 278545, 1152271, 18307381, 410041, 2628073, 12261061, 838201
Offset: 2

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Examples

			561 is the first Carmichael number and its prime factors are 3, 11, 17 (2nd, 5th and 7th primes), so a(2), a(5) and a(7) are equal to 561. - _Michel Marcus_, Nov 07 2013
		

Crossrefs

Programs

  • Mathematica
    c = Cases[Range[1, 10000000, 2], n_ /; Mod[n, CarmichaelLambda@ n] == 1 && ! PrimeQ@ n]; Table[First@ Select[c, Mod[#, Prime@ n] == 0 &], {n, 2, 16}] (* Michael De Vlieger, Aug 28 2015, after Artur Jasinski at A002997 *)
  • PARI
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    isA002997(n)=n%2 && !isprime(n) && Korselt(n) && n>1
    a(n) = my(pn=prime(n),cn = 31*pn); until (isA002997(cn+=2*pn),); cn; \\ Michel Marcus, Nov 07 2013, improved by M. F. Hasler, Apr 14 2015
    
  • PARI
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    a(n,p=prime(n))=my(m=lift(Mod(1/p,p-1)),c=max(m,33)*p,mp=m*p); while(!isprime(c) && !Korselt(c), c+=mp); c \\ Charles R Greathouse IV, Apr 15 2015

Extensions

More terms from Michel Marcus, Nov 07 2013
Escape clause added by Jianing Song, Dec 12 2021

A141710 Least prime factor of n-th Carmichael number A002997(n).

Original entry on oeis.org

3, 5, 7, 5, 7, 7, 7, 5, 7, 13, 7, 13, 7, 3, 7, 11, 7, 13, 7, 17, 7, 7, 41, 5, 37, 13, 19, 13, 31, 41, 5, 37, 31, 13, 13, 3, 11, 7, 7, 5, 7, 11, 7, 19, 7, 5, 7, 43, 31, 37, 17, 23, 7, 31, 41, 11, 19, 17, 13, 53, 5, 7, 11, 43, 13, 5, 29, 5, 101, 53, 7, 13, 11, 7, 19, 31, 41, 13, 29, 31, 5
Offset: 1

Views

Author

M. F. Hasler, Jul 01 2008

Keywords

Comments

All terms of this sequence are odd primes. See A002997 for references.

Examples

			a(1)=3 since A002997(1)=3*11*17.
		

Crossrefs

Programs

  • Mathematica
    CarmichaelQ[n_] := Not[PrimeQ[n]] && Divisible[n - 1, CarmichaelLambda[n]]; FactorInteger[#][[1, 1]]& /@ Select[Range[4, 10^7], CarmichaelQ] (* Jean-François Alcover, Sep 23 2011 *)
  • PARI
    A141710(n)=vecmin(factor(A002997(n))[,1]) /* where A002997(n) can be defined as follows: */ system("wget b002997.txt; sed -e 's/^[0-9]*//' b002997.gp"); A2997=readvec("b002997.gp"); A002997(n)=A2997[n]; \

Formula

a(n) = A020639(A002997(n))

A153514 Terms of A122780 which are not Carmichael numbers A002997.

Original entry on oeis.org

1, 6, 66, 91, 121, 286, 671, 703, 726, 949, 1541, 1891, 2665, 2701, 3281, 3367, 3751, 4961, 5551, 7107, 7381, 8205, 8401, 8646, 11011, 12403, 14383, 15203, 15457, 16471, 16531, 18721, 19345, 23521, 24046, 24661, 24727, 28009, 29161, 30857, 31621
Offset: 1

Views

Author

Artur Jasinski, Dec 28 2008

Keywords

Comments

For the intersection of this sequence and A153508, see A153513.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local p;
      if isprime(n) or (3 &^n - 3 mod n <> 0) then return false fi;
      if n::even then return true fi;
      if not numtheory:-issqrfree(n) then return true fi;
      for p in numtheory:-factorset(n) do
        if n-1 mod (p-1) <> 0 then return true fi
      od;
    false
    end proc:
    filter(1):= true:
    select(filter, [$1..10^5]); # Robert Israel, Jan 29 2017
  • Mathematica
    okQ[n_] := !PrimeQ[n] && PowerMod[3, n, n] == Mod[3, n] && Mod[n, CarmichaelLambda[n]] != 1;
    Select[Range[10^5], okQ] (* Jean-François Alcover, Mar 27 2019 *)

A213812 a(n) = smallest m for which the n-th Carmichael number A002997(n) can be written as p^2*(m+1) - p*m.

Original entry on oeis.org

1, 3, 4, 2, 2, 3, 1, 1, 2, 7, 24, 4, 4, 7, 47, 80, 9, 1, 23, 2, 46, 15, 24, 21, 24, 1, 1, 76, 8, 21, 16, 14, 6, 2, 150, 16, 8, 16, 3, 156, 36, 232, 2, 13, 10, 788, 40, 25, 2, 4, 123, 12, 44, 16, 8, 207, 226, 462, 92, 6
Offset: 1

Views

Author

Marius Coman, Jun 20 2012

Keywords

Comments

The corresponding values of p are (we write the Carmichael number in brackets): 17(561), 17(1105), 19(1729), 29(2465), 31(2821), 41(6601), 67(8911), 73(10585), 73(15841), 61(29341), 41(41041), 97(46657), 103(52633), 89(62745), 37(63973), 31(75361), 101(101101), 241(115921), 73(126217), 233(162401), 61(172081), 109(188461), 101(252601), 113(278545), 109(294409), 397(314821), 409(334153), 67(340561), 211(399001), 137(410041), 163(449065), 181(488881), 271(512461), 421(530881), 61(552721), 197(656601), 271(658801), 199(670033), 433(748657), 73(825265), 151(838201), 61(852841), 577(997633), 271(1024651), 307(1033669), 37(1050985), 163(1082809), 211(1152271), 631(1193221), 541(1461241), 113(1569457), 353(1615681), 199(1773289), 331(1857241), 461(1909001), 101(2100901), 97(2113921), 73(2433601), 163(2455921), 599(2508013).
Any Carmichael number C can be written as C = p^2*(n+1) - p*n, where p is any prime divisor of C (it can be seen that the smallest n is obtained for the biggest prime divisor).
The formula C = p^2*(n+1) - p*n is equivalent to C = p^2*m - p*(m-1) = p^2*m - p*m + p, equivalent to p^2 - p divides C - p, which is a direct consequence of Korselt’s criterion.
It can be shown from p - 1 divides C - 1 not that just p^2 - p divides C - p but even that p^2 - p divides C - p^k (if C > p^k) or p^k - C (if p^k > C) which leads to the generic formula for a Carmichael number: C = p^k + n*p^2 - n*p (if C > p^k) or C = p^k - n*p^2 + n*p (if p^k > C) for any p prime divisor of C and any k natural number.
The formulas generated giving values of k seems to be very useful in the study of Fermat pseudoprimes; also, the composite numbers C for which the equation C = p^k - n*p^2 + n*p gives, over the integers, as solutions, all their prime divisors, for a certain k, deserve further study.

Crossrefs

Cf. A002997.

Programs

  • PARI
    Car=[561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, 15841, 29341, 41041, 46657, 52633, 62745, 63973, 75361, 101101, 115921, 126217]; \\ use more terms of A002997 as desired
    apply(C->my(f=factor(C)[,1],p=f[#f],p2=p^2); (C-p2)/(p2-p), Car) \\ Charles R Greathouse IV, Jul 05 2017
Showing 1-10 of 355 results. Next