cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006931 Least Carmichael number with n prime factors, or 0 if no such number exists.

Original entry on oeis.org

561, 41041, 825265, 321197185, 5394826801, 232250619601, 9746347772161, 1436697831295441, 60977817398996785, 7156857700403137441, 1791562810662585767521, 87674969936234821377601, 6553130926752006031481761, 1590231231043178376951698401
Offset: 3

Views

Author

Keywords

Comments

Alford, Grantham, Hayman, & Shallue construct large Carmichael numbers, finding upper bounds for a(3)-a(19565220) and a(10333229505). - Charles R Greathouse IV, May 30 2013

References

  • J.-P. Delahaye, Merveilleux nombres premiers ("Amazing primes"), p. 269, Pour la Science, Paris 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    (* Program not suitable to compute more than a few terms *)
    A2997 = Select[Range[1, 10^6, 2], CompositeQ[#] && Mod[#, CarmichaelLambda[#] ] == 1&];
    (First /@ Split[Sort[{PrimeOmega[#], #}& /@ A2997], #1[[1]] == #2[[1]]&])[[All, 2]] (* Jean-François Alcover, Sep 11 2018 *)
  • PARI
    Korselt(n,f=factor(n))=for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1
    a(n)=my(p=2,f);forprime(q=3,default(primelimit),forstep(k=p+2,q-2,2,f=factor(k);if(vecmax(f[,2])==1 && #f[,2]==n && Korselt(k,f), return(k)));p=q)
    \\ Charles R Greathouse IV, Apr 25 2012
    
  • PARI
    carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(lo > hi, return(list)); if(k==1, lo=max(lo, ceil(A/m)); my(t=lift(1/Mod(m,l))); while(t < lo, t += l); forstep(p=t, hi, l, if(isprime(p), my(n=m*p); if((n-1)%(p-1) == 0, listput(list, n)))), forprime(p=lo, hi, if(gcd(m, p-1) == 1, list=concat(list, f(m*p, lcm(l, p-1), p+1, k-1))))); list); vecsort(Vec(f(1, 1, 3, k)));
    a(n) = if(n < 3, return()); my(x=vecprod(primes(n+1))\2,y=2*x); while(1, my(v=carmichael(x,y,n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 24 2023

Extensions

Corrected by Lekraj Beedassy, Dec 31 2002
More terms from Ralf Stephan, from the Pinch paper, Apr 16 2005
Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar.
Escape clause added by Jianing Song, Dec 12 2021

A135720 a(n) is the smallest Carmichael number (A002997) with the n-th prime as its smallest prime divisor, or 0 if no such number exists.

Original entry on oeis.org

561, 1105, 1729, 75361, 29341, 162401, 334153, 1615681, 3581761, 399001, 294409, 252601, 1152271, 104569501, 2508013, 178837201, 6189121, 10267951, 10024561, 14469841, 4461725581, 985052881, 19384289, 23382529, 3828001, 90698401, 84350561, 6733693, 17098369
Offset: 2

Views

Author

Artur Jasinski, Nov 25 2007

Keywords

Examples

			a(2) = 561 because the smallest prime divisor of 561 is 3 which is the second prime.
		

Crossrefs

Extensions

Two missing terms and terms up to a(447) added by Donovan Johnson, Dec 25 2013
a(448)-a(615) in b-file from Max Alekseyev, Mar 11 2018
Escape clause added by Jianing Song, Dec 12 2021

A253595 Least Carmichael number that is divisible by the n-th cyclic number A003277(n), or 0 if no such number exists.

Original entry on oeis.org

561, 1105, 1729, 561, 1105, 62745, 561, 1729, 6601, 2465, 2821, 561, 825265, 29341, 6601, 334153, 62745, 561, 2433601, 74165065, 29341, 1105, 8911, 116150434401, 10024561, 10585, 41041, 2508013, 55462177, 1105, 11921001
Offset: 3

Views

Author

Tim Johannes Ohrtmann, Jan 05 2015

Keywords

Comments

Has any odd cyclic number at least one Carmichael multiple?

Examples

			a(8) = 62745 because this is the least Carmichael number which is divisible by 15 (the 8th cyclic number).
		

Crossrefs

Programs

  • PARI
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    isA002997(n)=n%2 && !isprime(n) && Korselt(n) && n>1
    a(n) = {on = odd cyclic number(n); cn = 1; until (isA002997(cn) && (cn % on == 0), cn++); cn; }

Extensions

a(292)-a(853) from Max Alekseyev, Apr 26 2015
Escape clause added by Jianing Song, Dec 12 2021

A290486 The least 3-Carmichael number that is divisible by the n-th odd prime, or 0 if no such number exists.

Original entry on oeis.org

561, 1105, 1729, 561, 1105, 561, 1729, 6601, 2465, 2821, 29341, 6601, 334153, 104569501, 2508013, 178837201, 29341, 8911, 10024561, 10585, 2508013, 985052881, 19384289, 46657, 252601, 52633, 84350561, 294409, 3581761, 1152271, 139952671, 410041, 79624621
Offset: 1

Views

Author

Amiram Eldar, Aug 03 2017

Keywords

Comments

The terms were calculated using Pinch's tables of Carmichael numbers (see link below).

Crossrefs

Cf. A065091 (Odd primes), A087788 (3-Carmichael numbers), A135721, A141705.

Extensions

Escape clause added by Jianing Song, Dec 12 2021
Showing 1-4 of 4 results.