cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Richard Pinch

Richard Pinch's wiki page.

Richard Pinch has authored 6 sequences.

A047713 Euler-Jacobi pseudoprimes: 2^((n-1)/2) == (2 / n) mod n, where (2 / n) is a Jacobi symbol.

Original entry on oeis.org

561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 6601, 8321, 8481, 10585, 12801, 15841, 16705, 18705, 25761, 29341, 30121, 33153, 34945, 41041, 42799, 46657, 49141, 52633, 62745, 65281, 74665, 75361, 80581, 85489, 87249, 88357, 90751, 104653
Offset: 1

Keywords

Comments

Odd composite numbers n such that 2^((n-1)/2) == (-1)^((n^2-1)/8) mod n. - Thomas Ordowski, Dec 21 2013
Most terms are congruent to 1 mod 8 (cf. A006971). Among the first 1000 terms, the number of terms congruent to 1, 3, 5 and 7 mod 8 are 764, 47, 125 and 64, respectively. - Jianing Song, Sep 05 2018

References

  • R. K. Guy, Unsolved Problems in Number Theory, A12.
  • H. Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, Vol. 57, Birkhauser, Boston, 1985.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes the subsequence A006971).

Crossrefs

Terms in this sequence satisfying certain congruence: A270698 (congruent to 1 mod 4), A270697 (congruent to 3 mod 4), A006971 (congruent to +-1 mod 8), A244628 (congruent to 3 mod 8), A244626 (congruent to 5 mod 8).

Programs

  • Mathematica
    Select[ Range[ 3, 105000, 2 ], Mod[ 2^((# - 1)/2) - JacobiSymbol[ 2, # ], # ] == 0 && ! PrimeQ[ # ] & ]
  • PARI
    is(n)=n%2 && Mod(2,n)^(n\2)==kronecker(2,n) && !isprime(n) \\ Charles R Greathouse IV, Dec 20 2013

Extensions

Corrected by Eric W. Weisstein; more terms from David W. Wilson

A007011 a(n) = smallest pseudoprime to base 2 with n prime factors.

Original entry on oeis.org

341, 561, 11305, 825265, 45593065, 370851481, 38504389105, 7550611589521, 277960972890601, 32918038719446881, 1730865304568301265, 606395069520916762801, 59989606772480422038001, 6149883077429715389052001, 540513705778955131306570201, 35237869211718889547310642241
Offset: 2

Author

Keywords

Comments

Smallest composite number m with n prime factors such that 2^(m-1)-1 is divisible by m.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007535.

Programs

  • PARI
    fermat_psp(A, B, k, base) = A=max(A, vecprod(primes(k))); (f(m, l, lo, k) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(lo > hi, return(list)); if(k==1, forstep(p=lift(1/Mod(m, l)), hi, l, if(isprimepower(p) && gcd(m*base, p) == 1, my(n=m*p); if(n >= A && (n-1) % znorder(Mod(base, p)) == 0, listput(list, n)))), forprime(p=lo, hi, base%p == 0 && next; my(z=znorder(Mod(base, p))); gcd(m,z) == 1 || next; my(q=p, v=m*p); while(v <= B, list=concat(list, f(v, lcm(l, z), p+1, k-1)); q *= p; Mod(base, q)^z == 1 || break; v *= p))); list); vecsort(Set(f(1, 1, 2, k)));
    a(n) = if(n < 2, return()); my(x=vecprod(primes(n)), y=2*x); while(1, my(v=fermat_psp(x, y, n, 2)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Mar 04 2023

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007

A006971 Composite numbers k such that k == +-1 (mod 8) and 2^((k-1)/2) == 1 (mod k).

Original entry on oeis.org

561, 1105, 1729, 1905, 2047, 2465, 4033, 4681, 6601, 8321, 8481, 10585, 12801, 15841, 16705, 18705, 25761, 30121, 33153, 34945, 41041, 42799, 46657, 52633, 62745, 65281, 74665, 75361, 85489, 87249, 90751, 113201, 115921, 126217, 129921, 130561, 149281, 158369
Offset: 1

Author

Keywords

Comments

Previous name was "Terms of A047713 that are congruent to +-1 mod 8".
Complement of (A244626 union A244628) with respect to A047713. - Jianing Song, Sep 18 2018

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section A12, pp. 44-50.
  • Hans Riesel, Prime numbers and computer methods for factorization, Progress in Mathematics, Vol. 57, Birkhäuser, Boston, 1985.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of A001567 and A047713.

Programs

  • Mathematica
    Select[Range[10^5], MemberQ[{1, 7}, Mod[#, 8]] && CompositeQ[#] && PowerMod[2, (# - 1)/2, #] == 1 &] (* Amiram Eldar, Nov 06 2023 *)

Extensions

This sequence appeared as M5461 in Sloane-Plouffe (1995), but was later mistakenly declared to be an erroneous form of A047713. Thanks to Jianing Song for providing the correct definition. - N. J. A. Sloane, Sep 17 2018
Formal definition by Jianing Song, Sep 18 2018

A006972 Lucas-Carmichael numbers: squarefree composite numbers k such that p | k => p+1 | k+1.

Original entry on oeis.org

399, 935, 2015, 2915, 4991, 5719, 7055, 8855, 12719, 18095, 20705, 20999, 22847, 29315, 31535, 46079, 51359, 60059, 63503, 67199, 73535, 76751, 80189, 81719, 88559, 90287, 104663, 117215, 120581, 147455, 152279, 155819, 162687, 191807, 194327, 196559, 214199
Offset: 1

Keywords

Comments

Wright proves that this sequence is infinite (Main Theorem 2). - Charles R Greathouse IV, Nov 03 2015
Conjecture: if k = p*q*r, p = a*d - 1, q = b*d - 1, r = c*d - 1 are distinct odd primes, with d = gcd(p + 1, q + 1, r + 1) and a*b*c*d divides k + 1, then k is a Lucas-Carmichael number. - Davide Rotondo, Dec 23 2020
A composite k is a Lucas-Carmichael number if and only if k | A322702(k+1). - Thomas Ordowski, May 06 2021

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 399, p. 89, Ellipses, Paris 2008.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Intersection of A024556 and A056729.
Cf. A216925, A216926, A216927, A217002, A217003, A217091 (terms having 3, 4, 5, 6, 7 and 8 factors).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local k; for k from 1+
         `if`(n=1, 3, a(n-1)) while isprime(k) or not issqrfree(k)
           or add(irem(k+1,i+1), i=factorset(k))>0 do od; k
        end:
    seq(a(n), n=1..15);  # Alois P. Heinz, Apr 05 2018
  • Mathematica
    Select[ Range[ 2, 10^6 ], !PrimeQ[ # ] && Union[ Transpose[ FactorInteger[ # ] ][ [ 2 ] ] ] == {1} && Union[ Mod[ # + 1, Transpose[ FactorInteger[ # ] ][ [ 1 ] ] + 1 ] ] == {0} & ]
  • PARI
    is(n)=my(f=factor(n));for(i=1,#f[,1],if((n+1)%(f[i,1]+1) || f[i,2]>1, return(0)));#f[,1]>1 \\ Charles R Greathouse IV, Sep 23 2012
    
  • PARI
    lucas_carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=min(sqrtint(B+1)-1, sqrtnint(B\m, k))); if(lo > hi, return(list)); if(k==1, lo=max(lo, ceil(A/m)); my(t=lift(-1/Mod(m,l))); while(t < lo, t += l); forstep(p=t, hi, l, if(isprime(p), my(n=m*p); if((n+1)%(p+1) == 0, listput(list, n)))), forprime(p=lo, hi, if(gcd(m, p+1) == 1, list=concat(list, f(m*p, lcm(l, p+1), p+1, k-1))))); list); f(1, 1, 3, k);
    upto(n) = my(list=List()); for(k=3, oo, if(vecprod(primes(k+1))\2 > n, break); list=concat(list, lucas_carmichael(1, n, k))); vecsort(Vec(list)); \\ Daniel Suteu, Dec 01 2023

A006931 Least Carmichael number with n prime factors, or 0 if no such number exists.

Original entry on oeis.org

561, 41041, 825265, 321197185, 5394826801, 232250619601, 9746347772161, 1436697831295441, 60977817398996785, 7156857700403137441, 1791562810662585767521, 87674969936234821377601, 6553130926752006031481761, 1590231231043178376951698401
Offset: 3

Keywords

Comments

Alford, Grantham, Hayman, & Shallue construct large Carmichael numbers, finding upper bounds for a(3)-a(19565220) and a(10333229505). - Charles R Greathouse IV, May 30 2013

References

  • J.-P. Delahaye, Merveilleux nombres premiers ("Amazing primes"), p. 269, Pour la Science, Paris 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    (* Program not suitable to compute more than a few terms *)
    A2997 = Select[Range[1, 10^6, 2], CompositeQ[#] && Mod[#, CarmichaelLambda[#] ] == 1&];
    (First /@ Split[Sort[{PrimeOmega[#], #}& /@ A2997], #1[[1]] == #2[[1]]&])[[All, 2]] (* Jean-François Alcover, Sep 11 2018 *)
  • PARI
    Korselt(n,f=factor(n))=for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1
    a(n)=my(p=2,f);forprime(q=3,default(primelimit),forstep(k=p+2,q-2,2,f=factor(k);if(vecmax(f[,2])==1 && #f[,2]==n && Korselt(k,f), return(k)));p=q)
    \\ Charles R Greathouse IV, Apr 25 2012
    
  • PARI
    carmichael(A, B, k) = A=max(A, vecprod(primes(k+1))\2); (f(m, l, lo, k) = my(list=List()); my(hi=sqrtnint(B\m, k)); if(lo > hi, return(list)); if(k==1, lo=max(lo, ceil(A/m)); my(t=lift(1/Mod(m,l))); while(t < lo, t += l); forstep(p=t, hi, l, if(isprime(p), my(n=m*p); if((n-1)%(p-1) == 0, listput(list, n)))), forprime(p=lo, hi, if(gcd(m, p-1) == 1, list=concat(list, f(m*p, lcm(l, p-1), p+1, k-1))))); list); vecsort(Vec(f(1, 1, 3, k)));
    a(n) = if(n < 3, return()); my(x=vecprod(primes(n+1))\2,y=2*x); while(1, my(v=carmichael(x,y,n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 24 2023

Extensions

Corrected by Lekraj Beedassy, Dec 31 2002
More terms from Ralf Stephan, from the Pinch paper, Apr 16 2005
Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar.
Escape clause added by Jianing Song, Dec 12 2021

A006970 Euler pseudoprimes: composite numbers n such that 2^((n-1)/2) == +-1 (mod n).

Original entry on oeis.org

341, 561, 1105, 1729, 1905, 2047, 2465, 3277, 4033, 4681, 5461, 6601, 8321, 8481, 10261, 10585, 12801, 15709, 15841, 16705, 18705, 25761, 29341, 30121, 31621, 33153, 34945, 41041, 42799
Offset: 1

Keywords

Comments

Pseudoprimes for the primality test from [Schick]: n odd is probably prime if (n-1) | A003558((n-1)/2). (Succeeds for 99.9975% of odd natural numbers less than 10^8.) - Jonathan Skowera, Jun 29 2013
Equivalently, these are composites n such that ((n-1)/2)^((n-1)/2) == +-1 (mod n). - Thomas Ordowski, Nov 28 2023

References

  • R. K. Guy, Unsolved Problems in Number Theory, A12.
  • C. Schick, Weiche Primzahlen und das 257-Eck, 2008, pages 140-146.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    ok[?PrimeQ] = False; ok[n] := (p = PowerMod[2, (n - 1)/2, n]; p == Mod[1, n] || p == Mod[-1, n]); Select[2 Range[22000] + 1, ok] (* Jean-François Alcover, Apr 06 2011 *)
  • PARI
    isok(n) = {if (!isprime(n) && (n%2), npm = Mod(2, n)^((n-1)/2); if ((npm == Mod(1,n)) || (npm == Mod(-1,n)), print1(n, ", ")););} \\ Michel Marcus, Sep 12 2015

Extensions

a(15) corrected (to 10261 from 10241) by Faron Moller (fm(AT)csd.uu.se)
Name edited by Thomas Ordowski, Nov 28 2023